Basic Data Structures: Stacks and Queues

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Data Structures Data Structures and Algorithms

Outline

Stack: Abstract data type with the following operations:

Push(Key): adds key to collection

- Push(Key): adds key to collection
- Key Top(): returns most recently-added key

- Push(Key): adds key to collection
- Key Top(): returns most recently-added key
- Key Pop(): removes and returns most recently-added key

- Push(Key): adds key to collection
- Key Top(): returns most recently-added key
- Key Pop(): removes and returns most recently-added key
- Boolean Empty(): are there any elements?

Balanced Brackets

Input: A string *str* consisting of '(', ')', '[', ']' characters.

Output: Return whether or not the string's parentheses and square brackets are balanced.

Balanced Brackets

Balanced:

"([])[]()",
"((([[])]))())"
Unbalanced:

IsBalanced(str)

```
Stack stack
for char in str:
  if char in ['(', '[']:
    stack.Push(char)
  else:
    if stack.Empty(): return False
    top \leftarrow stack.Pop()
    if (top = '[' and char != ']') or
       (top = `(` and char != `)`):
      return False
return stack.Empty()
```


numElements: 0

Push(a)

numElements: 1

Push(a)

numElements: 1

Push(b)

numElements: 2

Push(b)

numElements: 2

Top()

 $Top() \rightarrow b$

numElements: 2

Push(c)

numElements: 3

Push(c)

numElements: 3

Pop()

 $Pop() \rightarrow c$

numElements: 2

Push(d)

numElements: 3

Push(d)

numElements: 3

Push(e)

numElements: 4

Push(e)

numElements: 4

Push(f)

numElements: 5

Push(f)

numElements: 5

Push(g)

numElements: 5

$Push(g) \rightarrow ERROR$

numElements: 5

$Empty() \rightarrow False$

numElements: 5

Pop()

$$Pop() \rightarrow f$$

numElements: 4

Pop()

$$Pop() \rightarrow e$$

numElements: 3

Pop()

$$Pop() \rightarrow d$$

numElements: 2

Pop()

 $Pop() \rightarrow b$

numElements: 1

Pop()

 $Pop() \rightarrow a$

numElements: 0

Empty()

numElements: 0

Empty() \rightarrow True

Push(a)

Push(a)

Push(b)

Push(b)

Top()

 $Top() \rightarrow b$

Push(c)

Push(c)

Pop()

Push(d)

Push(d)

Push(e)

Push(e)

Push(f)

Push(f)

Empty()

 $Empty() \rightarrow False$

Pop()

 $Pop() \rightarrow f$

Pop()

$Pop() \rightarrow e$

Pop()

$Pop() \rightarrow d$

Pop()

$Pop() \rightarrow b$

Pop()

 $Pop() \rightarrow a$

Empty()

 $Empty() \rightarrow True$

Summary

Stacks can be implemented with either an array or a linked list.

Summary

- Stacks can be implemented with either an array or a linked list.
- Each stack operation is O(1): Push, Pop, Top, Empty.

Summary

- Stacks can be implemented with either an array or a linked list.
- Each stack operation is O(1): Push, Pop, Top, Empty.
- Stacks are ocassionaly known as LIFO queues.

Outline

Queue: Abstract data type with the following operations:

Queue: Abstract data type with the following operations:

Enqueue(Key): adds key to collection

Queue: Abstract data type with the following operations:

- Enqueue(Key): adds key to collection
- Key Dequeue(): removes and returns least recently-added key

Queue: Abstract data type with the following operations:

- Enqueue(Key): adds key to collection
- Key Dequeue(): removes and returns least recently-added key
- Boolean Empty(): are there any elements?

Queue: Abstract data type with the following operations:

- Enqueue(Key): adds key to collection
- Key Dequeue(): removes and returns least recently-added key
- Boolean Empty(): are there any elements?

FIFO: First-In, First-Out

Enqueue(a)

Enqueue(a)

Enqueue(b)

Enqueue(b)

Empty()

 $Empty() \rightarrow False$

Enqueue(c)

Enqueue(c)

Dequeue()

$$ext{Dequeue}(ext{)}
ightarrow$$
 a

Enqueue(d)

Enqueue(d)

Enqueue(e)

Enqueue(e)

Enqueue(f)

Enqueue(f)

Dequeue()

 $Dequeue() \rightarrow b$

Dequeue()

Dequeue() \rightarrow c

$Dequeue() \rightarrow d$

Dequeue()

Dequeue()
$$\rightarrow$$
 e

Dequeue()

Dequeue()
$$\rightarrow$$
 f

Empty()
$$\rightarrow$$
 True

Enqueue: use List.PushBack

 Enqueue: use List.PushBack
 Dequeue: use List.TopFront and List.PopFront

- Enqueue: use List.PushBack
- Dequeue: use List.TopFront and List.PopFront
- Empty: use List.Empty

Enqueue(a)

Enqueue(a)

Enqueue(b)

Enqueue(b)

Empty()

 $Empty() \rightarrow False$

Enqueue(c)

Enqueue(c)

Dequeue()

 $Dequeue() \rightarrow a$

Dequeue()

Dequeue() \rightarrow b

Enqueue(d)

Enqueue(d)

Enqueue(e)

Enqueue(e)

Enqueue(f)

Enqueue(f)

Enqueue(g)

 $Enqueue(g) \rightarrow ERROR$

Dequeue()

Dequeue() \rightarrow c

Dequeue()

Dequeue() \rightarrow d

Dequeue()

 $Dequeue() \rightarrow e$

Dequeue()

 $Dequeue() \rightarrow f$

Empty()

 $Empty() \rightarrow True$

Summary

Summary

Queues can be implemented with either a linked list (with tail pointer) or an array.

Summary

- Queues can be implemented with either a linked list (with tail pointer) or an array.
- Each queue operation is O(1): Enqueue, Dequeue, Empty.