Basic Data Structures: Dynamic Arrays and Amortized Analysis

Neil Rhodes

Department of Computer Science and Engineering University of California, San Diego

Data Structures Data Structures and Algorithms

Outline

1 Dynamic Arrays

2 Amortized Analysis—Aggregate Method

3 Amortized Analysis—Banker's Method

4 Amortized Analysis—Physicist's Method

Problem: static arrays are static!

```
int my_array[100];
```

Problem: static arrays are static!

int my_array[100];

Semi-solution: dynamically-allocated arrays:

int *my_array = new int[size];

Problem: might not know max size when allocating an array

Problem: might not know max size when allocating an array

All problems in computer science can be solved by another level of indirection. Problem: might not know max size when allocating an array

All problems in computer science can be solved by another level of indirection.

Solution: *dynamic arrays* (also known as *resizable arrays*)

Idea: store a pointer to a dynamically allocated array, and replace it with a newly-allocated array as needed.

Dynamic Array:

Abstract data type with the following operations (at a minimum):

Dynamic Array:

Abstract data type with the following operations (at a minimum):

• Get(i): returns element at location i^*

Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(*i*): returns element at location i^*
- Set(i, val): Sets element i to val*

Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(i): returns element at location i^*
- Set(i, val): Sets element i to val*
- PushBack(val): Adds val to the end

Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(*i*): returns element at location i^*
- Set(i, val): Sets element i to val*
- PushBack(val): Adds val to the end
- Remove(i): Removes element at location i

Dynamic Array:

Abstract data type with the following operations (at a minimum):

- Get(*i*): returns element at location i^*
- Set(i, val): Sets element i to val*
- PushBack(val): Adds val to the end
- Remove(i): Removes element at location i
- Size(): the number of elements

Implementation

Store:

- arr: dynamically-allocated array
- capacity: size of the dynamically-allocated array
- size: number of elements currently in the array

Get(i)

if i < 0 or $i \ge size$: ERROR: index out of range return arr[i]

Set(*i*, *val*)

if i < 0 or $i \ge size$: ERROR: index out of range arr[i] = val

PushBack(val)

if size = capacity: allocate *new_arr* $[2 \times capacity]$ for *i* from 0 to size -1: $new_arr[i] \leftarrow arr[i]$ free *arr* arr \leftarrow new_arr; capacity $\leftarrow 2 \times$ capacity $arr[size] \leftarrow val$ $size \leftarrow size + 1$

$\operatorname{Remove}(i)$

if i < 0 or $i \ge size$: ERROR: index out of range for j from i to size - 2: $arr[j] \leftarrow arr[j + 1]$ $size \leftarrow size - 1$

Size()

return *size*

Common Implementations

- C++: vector
- Java: ArrayList
- **Python**: list (the only kind of array)

 $\operatorname{Get}(i) \mid O(1)$

$\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \end{array}$

$\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \\ \operatorname{PushBack}(\mathit{val}) & O(n) \end{array}$

$\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \\ \operatorname{PushBack}(\mathit{val}) & O(n) \\ \operatorname{Remove}(i) & O(n) \end{array}$

$\begin{array}{c|c} \operatorname{Get}(i) & O(1) \\ \operatorname{Set}(i, \mathit{val}) & O(1) \\ \operatorname{PushBack}(\mathit{val}) & O(n) \\ \operatorname{Remove}(i) & O(n) \\ \operatorname{Size}() & O(1) \end{array}$

Unlike static arrays, dynamic arrays can be resized.

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted

- Unlike static arrays, dynamic arrays can be resized.
- Appending a new element to a dynamic array is often constant time, but can take O(n).
- Some space is wasted—at most half.

Outline

1 Dynamic Arrays

2 Amortized Analysis—Aggregate Method

3 Amortized Analysis—Banker's Method

4 Amortized Analysis—Physicist's Method

Sometimes, looking at the individual worst-case may be too severe. We may want to know the total worst-case cost for a sequence of operations.

Dynamic Array

We only resize every so often. Many O(1) operations are followed by an O(n) operations. What is the total cost of inserting many elements?

Definition

Amortized cost: Given a sequence of n operations, the amortized cost is:

n

Dynamic array: n calls to PushBack

$$c_i = 1 + \left\{ {
m (}$$

$$c_i = 1 + \begin{cases} i-1 & \text{if } i-1 \text{ is a power of } 2 \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_{i}}{n}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{O(n)}{n}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a power of 2} \\ 0 & ext{otherwise} \end{cases}$$

$$\frac{\sum_{i=1}^{n} c_i}{n} = \frac{n + \sum_{j=1}^{\lfloor \log_2(n-1) \rfloor} 2^j}{n} = \frac{O(n)}{n} = O(1)$$

Outline

- 1 Dynamic Arrays
- 2 Amortized Analysis—Aggregate Method
- 3 Amortized Analysis—Banker's Method
- 4 Amortized Analysis—Physicist's Method

Banker's Method

• Charge extra for each cheap operation.

- Charge extra for each cheap operation.
- Save the extra charge as tokens in your data structure (conceptually).

- Charge extra for each cheap operation.
- Save the extra charge as tokens in your data structure (conceptually).
- Use the tokens to pay for expensive operations.

- Charge extra for each cheap operation.
- Save the extra charge as tokens in your data structure (conceptually).
- Use the tokens to pay for expensive operations.
- Like an amortizing loan.

Dynamic array: *n* calls to PushBack

Dynamic array: *n* calls to PushBack

Charge 3 for each insertion: 1 token is the raw cost for insertion.

Dynamic array: *n* calls to PushBack

Charge 3 for each insertion: 1 token is the raw cost for insertion.

Resize needed: To pay for moving the elements, use the token that's present on each element that needs to move.

Dynamic array: *n* calls to PushBack

Charge 3 for each insertion: 1 token is the raw cost for insertion.

- Resize needed: To pay for moving the elements, use the token that's present on each element that needs to move.
- Place one token on the newly-inserted element, and one token ^{capacity}/₂ elements prior.

arr size: 0 capacity: 0

arr

size: 0 capacity: 0

Dynamic Array Resizing size: 2 capacity: 2 arr а

O(1) amortized cost for each PushBack

Banker's Method

Dynamic array: *n* calls to PushBack Charge 3 for each insertion. 1 coin is the raw cost for insertion.

- Resize needed: To pay for moving the elements, use the coin that's present on each element that needs to move.
- Place one coin on the newly-inserted element, and one coin ^{capacity}/₂ elements prior.

Outline

- 1 Dynamic Arrays
- 2 Amortized Analysis—Aggregate Method
- 3 Amortized Analysis—Banker's Method
- 4 Amortized Analysis—Physicist's Method

 Define a *potential function*, Φ which maps states of the data structure to integers:

 Define a *potential function*, Φ which maps states of the data structure to integers:

$$\bullet \Phi(h_0) = 0$$

 Define a *potential function*, Φ which maps states of the data structure to integers:

•
$$\Phi(h_0) = 0$$

• $\Phi(h_t) \ge 0$

 Define a *potential function*, Φ which maps states of the data structure to integers:

•
$$\Phi(h_0) = 0$$

• $\Phi(h_t) \ge 0$

• amortized cost for operation t: $c_t + \Phi(h_t) - \Phi(h_{t-1})$

 Define a *potential function*, Φ which maps states of the data structure to integers:

•
$$\Phi(h_0) = 0$$

• $\Phi(h_t) \ge 0$

• amortized cost for operation t: $c_t + \Phi(h_t) - \Phi(h_{t-1})$

Choose Φ so that:

 Define a *potential function*, Φ which maps states of the data structure to integers:

•
$$\Phi(h_0) = 0$$

• $\Phi(h_t) \ge 0$

• amortized cost for operation t: $c_t + \Phi(h_t) - \Phi(h_{t-1})$

Choose Φ so that:

• if c_t is small, the potential increases

 Define a *potential function*, Φ which maps states of the data structure to integers:

•
$$\Phi(h_0) = 0$$

• $\Phi(h_t) \ge 0$

• amortized cost for operation t: $c_t + \Phi(h_t) - \Phi(h_{t-1})$

Choose Φ so that:

- if c_t is small, the potential increases
- if *c*_t is large, the potential decreases by the same scale

• The cost of *n* operations is: $\sum_{i=1}^{n} c_i$

• The cost of *n* operations is: $\sum_{i=1}^{n} c_i$

The sum of the amortized costs is:

$$\sum_{i=1}^n (c_i + \Phi(h_i) - \Phi(h_{i-1}))$$

- The cost of *n* operations is: $\sum_{i=1}^{n} c_i$
- The sum of the amortized costs is:
 - $\sum_{i=1}^n (c_i + \Phi(h_i) \Phi(h_{i-1}))
 onumber \ = c_1 + \Phi(h_1) \Phi(h_0) +
 onumber \ c_2 + \Phi(h_2) \Phi(h_1) \cdots +
 onumber \ c_n + \Phi(h_n) \Phi(h_{n-1})$

- The cost of *n* operations is: $\sum_{i=1}^{n} c_i$
- The sum of the amortized costs is:
 - $\sum (c_i + \Phi(h_i) \Phi(h_{i-1}))$ i=1 $=c_1 + \Phi(h_1) - \Phi(h_0) +$ $c_2 + \Phi(h_2) - \Phi(h_1) \cdots +$ $c_n + \Phi(h_n) - \Phi(h_{n-1})$ $=\Phi(h_n)-\Phi(h_0)+\sum c_i$ i=1

- The cost of *n* operations is: $\sum_{i=1}^{n} c_i$
- The sum of the amortized costs is:

$$egin{aligned} &\sum_{i=1}^n (c_i + \Phi(h_i) - \Phi(h_{i-1})) \ = &c_1 + \Phi(h_1) - \Phi(h_0) + \ &c_2 + \Phi(h_2) - \Phi(h_1) \cdots + \ &c_n + \Phi(h_n) - \Phi(h_{n-1}) \ = &\Phi(h_n) - \Phi(h_0) + \sum_{i=1}^n c_i \geq \sum_{i=1}^n c_i \end{aligned}$$

Dynamic array: n calls to PushBack

Dynamic array: n calls to PushBack

Let $\Phi(h) = 2 \times size - capacity$

Dynamic array: n calls to PushBack

Let $\Phi(h) = 2 \times size - capacity$ • $\Phi(h_0) = 2 \times 0 - 0 = 0$

Dynamic array: n calls to PushBack

Let
$$\Phi(h) = 2 \times size - capacity$$

• $\Phi(h_0) = 2 \times 0 - 0 = 0$
• $\Phi(h_i) = 2 \times size - capacity > 0$
(since $size > \frac{capacity}{2}$)

Without resize when adding element i

Amortized cost of adding element *i*:

Without resize when adding element i

Amortized cost of adding element *i*:

Without resize when adding element i

Amortized cost of adding element *i*: $c_i + \Phi(h_i) - \Phi(h_{i-1})$

Dynamic Array Resizing

Without resize when adding element i

Amortized cost of adding element *i*: $c_i + \Phi(h_i) - \Phi(h_{i-1})$ $=1 + 2 \times size_i - cap_i - (2 \times size_{i-1} - cap_{i-1})$

Dynamic Array Resizing

Without resize when adding element i

Amortized cost of adding element *i*: $c_i + \Phi(h_i) - \Phi(h_{i-1})$ $=1 + 2 \times size_i - cap_i - (2 \times size_{i-1} - cap_{i-1})$ $=1 + 2 \times (size_i - size_{i-1})$

Dynamic Array Resizing

Without resize when adding element i

Amortized cost of adding element *i*: $c_i + \Phi(h_i) - \Phi(h_{i-1})$ $=1 + 2 \times size_i - cap_i - (2 \times size_{i-1} - cap_{i-1})$ $=1 + 2 \times (size_i - size_{i-1})$ =3

Dynamic Array Resizing With resize when adding element *i*

Dynamic Array Resizing With resize when adding element *i* Let $k = size_{i-1} = cap_{i-1}$ Dynamic Array Resizing With resize when adding element *i* Let $k = size_{i-1} = cap_{i-1}$ Then: $\Phi(h_{i-1}) = 2size_{i-1} - cap_{i-1} = 2k - k = k$

$$c_i + \Phi(h_i) - \Phi(h_{i-1})$$

$$c_i + \Phi(h_i) - \Phi(h_{i-1})$$

=(size_i) + 2 - k

$$c_i + \Phi(h_i) - \Phi(h_{i-1})$$

=(size_i) + 2 - k
=(k + 1) + 2 - k

$$c_i + \Phi(h_i) - \Phi(h_{i-1})$$

=(size_i) + 2 - k
=(k + 1) + 2 - k
=3

Alternatives to Doubling the Array Size

We could use some different growth factor (1.5, 2.5, etc.). Could we use a constant amount?

$$c_i = 1 + \left\{ egin{array}{cl} i-1 & ext{if } i-1 ext{ is a multiple of 10} \\ \end{array}
ight.$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \\ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \\ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \ 0 & ext{otherwise} \end{cases}$$

$$c_i = 1 + egin{cases} i-1 & ext{if } i-1 ext{ is a multiple of 10} \ 0 & ext{otherwise} \end{cases}$$

 Calculate amortized cost of an operation in the context of a sequence of operations.

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
 - Aggregate method (brute-force sum)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
 - Aggregate method (brute-force sum)
 - Banker's method (tokens)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
 - Aggregate method (brute-force sum)
 - Banker's method (tokens)
 - Physicist's method (potential function, Φ)

- Calculate amortized cost of an operation in the context of a sequence of operations.
- Three ways to do analysis:
 - Aggregate method (brute-force sum)
 - Banker's method (tokens)
 - Physicist's method (potential function, Φ)
- Nothing changes in the code: runtime analysis only.