Priority Queues:
Introduction

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Data Structures
Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT

Outline

@ Overview

Learning objectives

You will be able to:

Implement a priority queue

Explain what is going on inside built-in
implementations:

C++: priority_queue

Java: PriorityQueue

Python: heapq

A queue is an abstract data type supporting
the following main operations:

m PushBack(e) adds an element to the
back of the queue;

m PopFront() extracts an element from
the front of the queue.

Priority Queue (Informally)

A priority queue is a generalization of a queue
where each element is assigned a priority and
elements come out in order by priority.

Priority Queues: Typical Use Case
Scheduling jobs

m Want to process jobs one by one in order
of decreasing priority. While the current
job is processed, new jobs may arrive.

Priority Queues: Typical Use Case
Scheduling jobs

m Want to process jobs one by one in order
of decreasing priority. While the current
job is processed, new jobs may arrive.

m To add a job to the set of scheduled
jobs, call Insert(job).

Priority Queues: Typical Use Case
Scheduling jobs

m Want to process jobs one by one in order
of decreasing priority. While the current
job is processed, new jobs may arrive.

m To add a job to the set of scheduled
jobs, call Insert(job).

m To process a job with the highest
priority, get it by calling ExtractMax().

Priority Queue (Formally)

Definition
Priority queue is an abstract data type
supporting the following main operations:
m Insert(p) adds a new element with
priority p
m ExtractMax() extracts an element with
maximum priority

Example

Contents:

Queries:

Example

Contents:

Queries:
Insert(b)

Example

Contents:

Queries:

Example

Contents:

Queries:
Insert(7)

Example

Contents:

Queries:

Example

Contents:

Queries:
Insert(1)

Example

Contents:

Queries:

Example

Contents:

Queries:
Insert(4)

Example

Contents:

Queries:

Example

Contents:

Queries:

ExtractMax() — 7

Example

Contents:

Queries:

Example

Contents:

Queries:
Insert(3)

Example

Contents:

Queries:

Example

Contents:

Queries:

ExtractMax() — 5

Example

Contents:

Queries:

Example

Contents:

Queries:

ExtractMax() — 4

Example

Contents:

Queries:

Additional Operations

m Remove(it) removes an element pointed
by an iterator jt

m GetMax() returns an element with

maximum priority (without changing the
set of elements)

m ChangePriority(it, p) changes the
priority of an element pointed by it to p

Algorithms that Use Priority Queues

m Dijkstra’s algorithm: finding a shortest
path in a graph

Algorithms that Use Priority Queues

m Dijkstra’s algorithm: finding a shortest
path in a graph

m Prim’s algorithm: constructing a
minimum spanning tree of a graph

Algorithms that Use Priority Queues

m Dijkstra’s algorithm: finding a shortest
path in a graph

m Prim’s algorithm: constructing a
minimum spanning tree of a graph

m Huffman's algorithm: constructing an
optimum prefix-free encoding of a string

Algorithms that Use Priority Queues

m Dijkstra’s algorithm: finding a shortest
path in a graph

m Prim’s algorithm: constructing a
minimum spanning tree of a graph

m Huffman's algorithm: constructing an
optimum prefix-free encoding of a string

m Heap sort: sorting a given sequence

Outline

@® Naive Implementations

Unsorted Array/List

3191(16/10| 2

3119 |16/ _]10[_1 2

Unsorted Array/List

319(16|10| 2

3119 |16/ _]10[_1 2

m Insert(e)

m add e to the end
m running time: O(1)

Unsorted Array/List

319(16|10| 2

3119 |16/ _]10[_1 2

m Insert(e)

m add e to the end

m running time: O(1)
m ExtractMax()

m scan the array/list
m running time: O(n)

Sorted Array

9 [10{16

Sorted Array

21319/|10|16

m ExtractMax()

m extract the last element
m running time: O(1)

Sorted Array

21319/|10|16

m ExtractMax()
m extract the last element
m running time: O(1)
m Insert(e)
m find a position for e (O(log n) by using
binary search), shift all elements to the
right of it by 1 (O(n)), insert e (O(1))
m running time: O(n)

Sorted List

\ \ \

’ 3 ’ 9 ’ 10
y) y) y)
S S S

116

Sorted List

110

116

m ExtractMax()

m extract the last element

m running time: O(1)

Sorted List

> > > > —
22312 9 [Zf10[16

m ExtractMax()
m extract the last element
m running time: O(1)
m Insert(e)
m find a position for e (O(n); note: cannot

use binary search), insert e (O(1))
m running time: O(n)

Summary

Insert ExtractMax

Unsorted array/list ~ O(1) O(n)
Sorted array/list O(n) O(1)

Summary

Insert ExtractMax

Unsorted array/list ~ O(1) O(n)
Sorted array/list O(n) O(1)

Binary heap O(logn) O(logn)

	Overview
	Naive Implementations

