
Priority Queues:

Binary Heaps

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg
Russian Academy of Sciences

Data Structures

Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

Definition

Binary max-heap is a binary tree (each node

has zero, one, or two children) where the

value of each node is at least the values of

its children.

In other words

For each edge of the tree, the value of the

parent is at least the value of the child.

Definition

Binary max-heap is a binary tree (each node

has zero, one, or two children) where the

value of each node is at least the values of

its children.

In other words

For each edge of the tree, the value of the

parent is at least the value of the child.

Example: heap

42

29

14

11

7

18

18

12 7

Example: not a heap

10

5

3

19 6

17

25

25 6

7

Example: not a heap

10

5

3

19 6

17

25

25 6

7

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

GetMax

42

29

14

11

7

18

18

12 7

GetMax

return the root

value

42

29

14

11

7

18

18

12 7

GetMax

return the root

value

42

29

14

11

7

18

18

12 7

running time: O(1)

Insert

42

29

14

11

7

18

18

12 7

Insert

42

29

14

11

7

18

18

12 7

attach a new

node to any leaf

Insert

attach a new

node to any leaf

42

29

14

11

7

32

18

18

12 7

Insert

42

29

14

11

7

32

18

18

12 7

this may violate

the heap prop-

erty

Insert

this may violate

the heap prop-

erty

42

29

14

11

7

32

18

18

12 7

Insert

42

29

14

11

7

32

18

18

12 7

to �x this, we

let the new node

sift up

SiftUp

42

29

14

11

7

32

18

18

12 7

for this, we

swap the prob-

lematic node

with its parent

until the prop-

erty is satis�ed

SiftUp

42

29

14

11

32

7

18

18

12 7

SiftUp

42

29

14

11

32

7

18

18

12 7

SiftUp

42

32

14

11

29

7

18

18

12 7

SiftUp

42

32

14

11

29

7

18

18

12 7

invariant: heap

property is vio-

lated on at most

one edge

SiftUp

42

32

14

11

29

7

18

18

12 7

this edge gets

closer to the

root while sift-

ing up

SiftUp

42

32

14

11

29

7

18

18

12 7

running time: O(tree height)

ExtractMax

42

29

14

11

7

18

18

12 7

ExtractMax

42

29

14

11

7

18

18

12 7

replace the root

with any leaf

ExtractMax

replace the root

with any leaf

42

29

14

11

7

18

18

12 7

ExtractMax

replace the root

with any leaf

12

29

14

11

7

18

18

7

ExtractMax

12

29

14

11

7

18

18

7

again, this may

violate the heap

property

ExtractMax

again, this may

violate the heap

property

12

29

14

11

7

18

18

7

ExtractMax

12

29

14

11

7

18

18

7

to �x it, we let

the problematic

node sift down

SiftDown

12

29

14

11

7

18

18

7

for this, we

swap the prob-

lematic node

with larger child

until the heap

property is satis-

�ed

SiftDown

12

29

14

11

7

18

18

7

SiftDown

29

12

14

11

7

18

18

7

SiftDown

29

12

14

11

7

18

18

7

SiftDown

29

14

12

11

7

18

18

7

SiftDown

29

14

12

11

7

18

18

7

we swap with

the larger child

which automat-

ically �xes one

of the two bad

edges

SiftDown

29

14

12

11

7

18

18

7

running time: O(tree height)

ChangePriority

42

29

14

11

7

18

18

12 7

ChangePriority

42

29

14

11

7

18

18

12 7

change the pri-

ority and let the

changed element

sift up or down

depending on

whether its pri-

ority decreased

or increased

ChangePriority

change the pri-

ority and let the

changed element

sift up or down

depending on

whether its pri-

ority decreased

or increased

42

29

14

11

7

18

18

12 7

ChangePriority

change the pri-

ority and let the

changed element

sift up or down

depending on

whether its pri-

ority decreased

or increased

42

29

14

11

7

18

18

35 7

ChangePriority

42

29

14

11

7

18

18

35 7

ChangePriority

42

29

14

11

7

18

35

18 7

ChangePriority

42

29

14

11

7

18

35

18 7

ChangePriority

42

29

14

11

7

35

18

18 7

ChangePriority

42

29

14

11

7

35

18

18 7

running time: O(tree height)

Remove

42

29

14

11

7

18

18

12 7

Remove

42

29

14

11

7

18

18

12 7

change the pri-

ority of the el-

ement to ∞,

let it sift up,

and then extract

maximum

Remove

42

29

14

11

7

18

18

12 7

Remove

42

29

14

11

7

18

∞

12 7

Remove

42

29

14

11

7

18

∞

12 7

Remove

42

29

14

11

7

∞

18

12 7

Remove

42

29

14

11

7

∞

18

12 7

Remove

∞

29

14

11

7

42

18

12 7

Remove

∞

29

14

11

7

42

18

12 7

now, call

ExtractMax()

Remove

∞

29

14

11

7

42

18

12 7

Remove

11

29

14 7

42

18

12 7

Remove

11

29

14 7

42

18

12 7

Remove

42

29

14 7

11

18

12 7

Remove

42

29

14 7

11

18

12 7

Remove

42

29

14 7

18

11

12 7

Remove

42

29

14 7

18

11

12 7

Remove

42

29

14 7

18

12

11 7

Remove

42

29

14 7

18

12

11 7

running time: O(tree height)

Summary

GetMax works in time O(1), all other

operations work in time O(tree height)

we de�nitely want a tree to be shallow

Summary

GetMax works in time O(1), all other

operations work in time O(tree height)

we de�nitely want a tree to be shallow

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

How to Keep a Tree Shallow?

Definition

A binary tree is complete if all its levels are

�lled except possibly the last one which is

�lled from left to right.

Example: complete binary tree

Example: complete binary tree

Example: complete binary tree

Example: complete binary tree

Example: not complete binary tree

Example: not complete binary tree

Example: not complete binary tree

Example: not complete binary tree

First Advantage: Low Height

Lemma

A complete binary tree with n nodes has

height at most O(log n).

Proof

Complete the last level to get a full

binary tree on n′ ≥ n nodes and the

same number of levels ℓ.

Note that n′ ≤ 2n.

Then n′ = 2ℓ − 1 and hence

ℓ = log2(n
′ + 1) ≤ log2(2n + 1) =

O(log n).

Second Advantage: Store as Array

42

29

14

11 13

7

18

18 12

Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

parent(i) = ⌊ i
2
⌋

leftchild(i) = 2i

rightchild(i) = 2i + 1

Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

42
1

29
2

18
3

14
4

7
5

18
6

12
7

11
8

5
9

parent(i) = ⌊ i
2
⌋

leftchild(i) = 2i

rightchild(i) = 2i + 1

What do we pay for these advantages?

We need to keep the tree complete.

Which binary heap operations modify

the shape of the tree?

Only Insert and ExtractMax (Remove

changes the shape by calling

ExtractMax).

What do we pay for these advantages?

We need to keep the tree complete.

Which binary heap operations modify

the shape of the tree?

Only Insert and ExtractMax (Remove

changes the shape by calling

ExtractMax).

What do we pay for these advantages?

We need to keep the tree complete.

Which binary heap operations modify

the shape of the tree?

Only Insert and ExtractMax (Remove

changes the shape by calling

ExtractMax).

What do we pay for these advantages?

We need to keep the tree complete.

Which binary heap operations modify

the shape of the tree?

Only Insert and ExtractMax (Remove

changes the shape by calling

ExtractMax).

Keeping the Tree Complete

42

29

14

11

7

18

18 12

Keeping the Tree Complete

42

29

14

11

7

18

18 12

to insert an el-

ement, insert it

as a leaf in the

leftmost vacant

position in the

last level and let

it sift up

Keeping the Tree Complete

to insert an el-

ement, insert it

as a leaf in the

leftmost vacant

position in the

last level and let

it sift up

42

29

14

11 30

7

18

18 12

Keeping the Tree Complete

to insert an el-

ement, insert it

as a leaf in the

leftmost vacant

position in the

last level and let

it sift up

42

29

30

11 14

7

18

18 12

Keeping the Tree Complete

to insert an el-

ement, insert it

as a leaf in the

leftmost vacant

position in the

last level and let

it sift up

42

30

29

11 14

7

18

18 12

Keeping the Tree Complete

42

30

29

11 14

7

18

18 12

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

Keeping the Tree Complete

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

42

30

29

11 14

7

18

18 12

Keeping the Tree Complete

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

14

30

29

11

7

18

18 12

Keeping the Tree Complete

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

30

14

29

11

7

18

18 12

Keeping the Tree Complete

to extract the

maximum value,

replace the root

by the last leaf

and let it sift

down

30

29

14

11

7

18

18 12

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

General Setting

maxSize is the maximum number of

elements in the heap

size is the size of the heap

H [1 . . .maxSize] is an array of length

maxSize where the heap occupies the

�rst size elements

General Setting

maxSize is the maximum number of

elements in the heap

size is the size of the heap

H [1 . . .maxSize] is an array of length

maxSize where the heap occupies the

�rst size elements

General Setting

maxSize is the maximum number of

elements in the heap

size is the size of the heap

H [1 . . .maxSize] is an array of length

maxSize where the heap occupies the

�rst size elements

Example

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

42
1

29
2

18
3

14
4

7
5

18
6

12
7

11
8

5
9

30
10

29
11

2
12

8
13

H

size = 9

maxSize = 13

Parent(i)

return ⌊ i
2
⌋

LeftChild(i)

return 2i

RightChild(i)

return 2i + 1

SiftUp(i)

while i > 1 and H [Parent(i)] < H [i]:

swap H [Parent(i)] and H [i]

i ← Parent(i)

SiftDown(i)

maxIndex ← i

ℓ← LeftChild(i)

if ℓ ≤ size and H [ℓ] > H [maxIndex]:

maxIndex ← ℓ

r ← RightChild(i)

if r ≤ size and H [r] > H [maxIndex]:

maxIndex ← r

if i ̸= maxIndex:

swap H [i] and H [maxIndex]

SiftDown(maxIndex)

Insert(p)

if size = maxSize:

return ERROR

size ← size + 1

H [size]← p

SiftUp(size)

ExtractMax()

result ← H [1]

H [1]← H [size]

size ← size − 1

SiftDown(1)

return result

Remove(i)

H [i]←∞
SiftUp(i)

ExtractMax()

ChangePriority(i , p)

oldp ← H [i]

H [i]← p

if p > oldp:

SiftUp(i)

else:

SiftDown(i)

Summary

The resulting implementation is

fast: all operations work in time

O(log n) (GetMax even works in O(1))

space e�cient: we store an array of

priorities; parent-child connections are

not stored, but are computed on the �y

easy to implement: all operations are

implemented in just a few lines of code

Summary

The resulting implementation is

fast: all operations work in time

O(log n) (GetMax even works in O(1))

space e�cient: we store an array of

priorities; parent-child connections are

not stored, but are computed on the �y

easy to implement: all operations are

implemented in just a few lines of code

Summary

The resulting implementation is

fast: all operations work in time

O(log n) (GetMax even works in O(1))

space e�cient: we store an array of

priorities; parent-child connections are

not stored, but are computed on the �y

easy to implement: all operations are

implemented in just a few lines of code

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

Sort Using Priority Queues

HeapSort(A[1 . . . n])

create an empty priority queue

for i from 1 to n:

Insert(A[i])

for i from n downto 1:

A[i]← ExtractMax()

The resulting algorithms is

comparison-based and has running time

O(n log n) (hence, asymptotically

optimal!).

Natural generalization of selection sort:

instead of simply scanning the rest of

the array to �nd the maximum value,

use a smart data structure.

Not in-place: uses additional space to

store the priority queue.

The resulting algorithms is

comparison-based and has running time

O(n log n) (hence, asymptotically

optimal!).

Natural generalization of selection sort:

instead of simply scanning the rest of

the array to �nd the maximum value,

use a smart data structure.

Not in-place: uses additional space to

store the priority queue.

The resulting algorithms is

comparison-based and has running time

O(n log n) (hence, asymptotically

optimal!).

Natural generalization of selection sort:

instead of simply scanning the rest of

the array to �nd the maximum value,

use a smart data structure.

Not in-place: uses additional space to

store the priority queue.

This lesson

In-place heap sort algorithm. For this, we will

�rst turn a given array into a heap by

permuting its elements.

Turn Array into a Heap

BuildHeap(A[1 . . . n])

size ← n

for i from ⌊n/2⌋ downto 1:

SiftDown(i)

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

In-place Heap Sort

HeapSort(A[1 . . . n])

BuildHeap(A) {size = n}

repeat (n − 1) times:

swap A[1] and A[size]

size ← size − 1

SiftDown(1)

Building Running Time

The running time of BuildHeap is

O(n log n) since we call SiftDown for

O(n) nodes.

If a node is already close to the leaves,

then sifting it down is fast.

We have many such nodes!

Was our estimate of the running time of

BuildHeap too pessimistic?

Building Running Time

The running time of BuildHeap is

O(n log n) since we call SiftDown for

O(n) nodes.

If a node is already close to the leaves,

then sifting it down is fast.

We have many such nodes!

Was our estimate of the running time of

BuildHeap too pessimistic?

Building Running Time

The running time of BuildHeap is

O(n log n) since we call SiftDown for

O(n) nodes.

If a node is already close to the leaves,

then sifting it down is fast.

We have many such nodes!

Was our estimate of the running time of

BuildHeap too pessimistic?

Building Running Time

The running time of BuildHeap is

O(n log n) since we call SiftDown for

O(n) nodes.

If a node is already close to the leaves,

then sifting it down is fast.

We have many such nodes!

Was our estimate of the running time of

BuildHeap too pessimistic?

Building Running Time
nodes

1
2

...

≤ n/4
≤ n/2

T (SiftDown)
log2 n

...

2
1

T (BuildHeap) ≤ n

2
· 1+ n

4
· 2+ n

8
· 3+ . . .

≤ n ·
∞∑︁
i=1

i

2i
= 2n

Building Running Time
nodes

1
2

...

≤ n/4
≤ n/2

T (SiftDown)
log2 n

...

2
1

T (BuildHeap) ≤ n

2
· 1+ n

4
· 2+ n

8
· 3+ . . .

≤ n ·
∞∑︁
i=1

i

2i
= 2n

Estimating the Sum

1
2

1
4

1
8

1
16 . . .

1
1
2
+ 1

4
+ 1

8
+ 1

16
+ . . . =

∞∑︀
k=1

1
2k

= 1

1
1/2
1/4
1/8

. . .
1
2
+ 2

4
+ 3

8
+ 4

16
+ . . . =

∞∑︀
k=1

k
2k

= 2

Estimating the Sum

1
2

1
4

1
8

1
16 . . .

1
1
2
+ 1

4
+ 1

8
+ 1

16
+ . . . =

∞∑︀
k=1

1
2k

= 1

1
1/2
1/4
1/8

. . .

1
2
+ 2

4
+ 3

8
+ 4

16
+ . . . =

∞∑︀
k=1

k
2k

= 2

Estimating the Sum

1
2

1
4

1
8

1
16 . . .

1
1
2
+ 1

4
+ 1

8
+ 1

16
+ . . . =

∞∑︀
k=1

1
2k

= 1

1
1/2
1/4
1/8

. . .

1
2
+ 2

4
+ 3

8
+ 4

16
+ . . . =

∞∑︀
k=1

k
2k

= 2

Estimating the Sum

1
2

1
4

1
8

1
16 . . .

1
1
2
+ 1

4
+ 1

8
+ 1

16
+ . . . =

∞∑︀
k=1

1
2k

= 1

1
1/2
1/4
1/8

. . .
1
2
+ 2

4
+ 3

8
+ 4

16
+ . . . =

∞∑︀
k=1

k
2k

= 2

Partial sorting

Input: An array A[1 . . . n], an integer

1 ≤ k ≤ n.

Output: The last k elements of a sorted

version of A.

Can be solved in O(n) if k = O(n
log n)!

Partial sorting

Input: An array A[1 . . . n], an integer

1 ≤ k ≤ n.

Output: The last k elements of a sorted

version of A.

Can be solved in O(n) if k = O(n
log n)!

PartialSorting(A[1 . . . n], k)

BuildHeap(A)

for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)

PartialSorting(A[1 . . . n], k)

BuildHeap(A)

for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)

Summary

Heap sort is a time and space e�cient

comparison-based algorithm: has running

time O(n log n), uses no additional space.

Outline

1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks

0-based Arrays

Parent(i)

return ⌊ i−1
2
⌋

LeftChild(i)

return 2i + 1

RightChild(i)

return 2i + 2

Binary Min-Heap

Definition

Binary min-heap is a binary tree (each node

has zero, one, or two children) where the

value of each node is at most the values of

its children.

Can be implemented similarly.

d -ary Heap
In a d -ary heap nodes on all levels

except for possibly the last one have

exactly d children.

The height of such a tree is about

logd n.

The running time of SiftUp is

O(logd n).

The running time of SiftDown is

O(d logd n): on each level, we �nd the

largest value among d children.

d -ary Heap
In a d -ary heap nodes on all levels

except for possibly the last one have

exactly d children.

The height of such a tree is about

logd n.

The running time of SiftUp is

O(logd n).

The running time of SiftDown is

O(d logd n): on each level, we �nd the

largest value among d children.

d -ary Heap
In a d -ary heap nodes on all levels

except for possibly the last one have

exactly d children.

The height of such a tree is about

logd n.

The running time of SiftUp is

O(logd n).

The running time of SiftDown is

O(d logd n): on each level, we �nd the

largest value among d children.

d -ary Heap
In a d -ary heap nodes on all levels

except for possibly the last one have

exactly d children.

The height of such a tree is about

logd n.

The running time of SiftUp is

O(logd n).

The running time of SiftDown is

O(d logd n): on each level, we �nd the

largest value among d children.

Summary

Priority queue supports two main

operations: Insert and ExtractMax.

In an array/list implementation one

operation is very fast (O(1)) but the

other one is very slow (O(n)).

Binary heap gives an implementation

where both operations take O(log n)

time.

Can be made also space e�cient.

Summary

Priority queue supports two main

operations: Insert and ExtractMax.

In an array/list implementation one

operation is very fast (O(1)) but the

other one is very slow (O(n)).

Binary heap gives an implementation

where both operations take O(log n)

time.

Can be made also space e�cient.

Summary

Priority queue supports two main

operations: Insert and ExtractMax.

In an array/list implementation one

operation is very fast (O(1)) but the

other one is very slow (O(n)).

Binary heap gives an implementation

where both operations take O(log n)

time.

Can be made also space e�cient.

Summary

Priority queue supports two main

operations: Insert and ExtractMax.

In an array/list implementation one

operation is very fast (O(1)) but the

other one is very slow (O(n)).

Binary heap gives an implementation

where both operations take O(log n)

time.

Can be made also space e�cient.

	Binary Trees
	Basic Operations
	Complete Binary Trees
	Pseudocode
	Heap Sort
	Final Remarks

