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Definition

Binary max-heap is a binary tree (each node

has zero, one, or two children) where the

value of each node is at least the values of

its children.

In other words

For each edge of the tree, the value of the

parent is at least the value of the child.
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until the prop-

erty is satis�ed
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which automat-

ically �xes one

of the two bad
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running time: O(tree height)



Summary

GetMax works in time O(1), all other

operations work in time O(tree height)

we de�nitely want a tree to be shallow
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How to Keep a Tree Shallow?

Definition

A binary tree is complete if all its levels are

�lled except possibly the last one which is

�lled from left to right.



Example: complete binary tree
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First Advantage: Low Height

Lemma

A complete binary tree with n nodes has

height at most O(log n).



Proof

Complete the last level to get a full

binary tree on n′ ≥ n nodes and the

same number of levels ℓ.

Note that n′ ≤ 2n.

Then n′ = 2ℓ − 1 and hence

ℓ = log2(n
′ + 1) ≤ log2(2n + 1) =

O(log n).



Second Advantage: Store as Array
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What do we pay for these advantages?

We need to keep the tree complete.

Which binary heap operations modify

the shape of the tree?

Only Insert and ExtractMax (Remove

changes the shape by calling

ExtractMax).
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General Setting

maxSize is the maximum number of

elements in the heap

size is the size of the heap

H [1 . . .maxSize] is an array of length

maxSize where the heap occupies the

�rst size elements
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Parent(i)

return ⌊ i
2
⌋

LeftChild(i)

return 2i

RightChild(i)

return 2i + 1



SiftUp(i)

while i > 1 and H [Parent(i)] < H [i ]:

swap H [Parent(i)] and H [i ]

i ← Parent(i)



SiftDown(i)

maxIndex ← i

ℓ← LeftChild(i)

if ℓ ≤ size and H [ℓ] > H [maxIndex ]:

maxIndex ← ℓ

r ← RightChild(i)

if r ≤ size and H [r ] > H [maxIndex ]:

maxIndex ← r

if i ̸= maxIndex:

swap H [i ] and H [maxIndex ]

SiftDown(maxIndex)



Insert(p)

if size = maxSize:

return ERROR

size ← size + 1

H [size]← p

SiftUp(size)



ExtractMax()

result ← H [1]

H [1]← H [size]

size ← size − 1

SiftDown(1)

return result



Remove(i)

H [i ]←∞
SiftUp(i)

ExtractMax()



ChangePriority(i , p)

oldp ← H [i ]

H [i ]← p

if p > oldp:

SiftUp(i)

else:

SiftDown(i)



Summary

The resulting implementation is

fast: all operations work in time

O(log n) (GetMax even works in O(1))

space e�cient: we store an array of

priorities; parent-child connections are

not stored, but are computed on the �y

easy to implement: all operations are

implemented in just a few lines of code
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Sort Using Priority Queues

HeapSort(A[1 . . . n])

create an empty priority queue

for i from 1 to n:

Insert(A[i ])

for i from n downto 1:

A[i ]← ExtractMax()



The resulting algorithms is

comparison-based and has running time

O(n log n) (hence, asymptotically

optimal!).

Natural generalization of selection sort:

instead of simply scanning the rest of

the array to �nd the maximum value,

use a smart data structure.

Not in-place: uses additional space to

store the priority queue.
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This lesson

In-place heap sort algorithm. For this, we will

�rst turn a given array into a heap by

permuting its elements.



Turn Array into a Heap

BuildHeap(A[1 . . . n])

size ← n

for i from ⌊n/2⌋ downto 1:

SiftDown(i)



We repair the heap property going from

bottom to top.

Initially, the heap property is satis�ed in

all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap

property in all subtrees of depth 1.

When we reach the root, the heap

property is satis�ed in the whole tree.

Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html
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In-place Heap Sort

HeapSort(A[1 . . . n])

BuildHeap(A) {size = n}

repeat (n − 1) times:

swap A[1] and A[size]

size ← size − 1

SiftDown(1)



Building Running Time

The running time of BuildHeap is

O(n log n) since we call SiftDown for

O(n) nodes.

If a node is already close to the leaves,

then sifting it down is fast.

We have many such nodes!

Was our estimate of the running time of

BuildHeap too pessimistic?
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Partial sorting

Input: An array A[1 . . . n], an integer

1 ≤ k ≤ n.

Output: The last k elements of a sorted

version of A.

Can be solved in O(n) if k = O( n
log n)!
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PartialSorting(A[1 . . . n], k)

BuildHeap(A)

for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



PartialSorting(A[1 . . . n], k)

BuildHeap(A)

for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



Summary

Heap sort is a time and space e�cient

comparison-based algorithm: has running

time O(n log n), uses no additional space.
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0-based Arrays

Parent(i)

return ⌊ i−1
2
⌋

LeftChild(i)

return 2i + 1

RightChild(i)

return 2i + 2



Binary Min-Heap

Definition

Binary min-heap is a binary tree (each node

has zero, one, or two children) where the

value of each node is at most the values of

its children.

Can be implemented similarly.



d -ary Heap
In a d -ary heap nodes on all levels

except for possibly the last one have

exactly d children.

The height of such a tree is about

logd n.

The running time of SiftUp is

O(logd n).

The running time of SiftDown is

O(d logd n): on each level, we �nd the

largest value among d children.
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Summary

Priority queue supports two main

operations: Insert and ExtractMax.

In an array/list implementation one

operation is very fast (O(1)) but the

other one is very slow (O(n)).

Binary heap gives an implementation

where both operations take O(log n)

time.

Can be made also space e�cient.
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