# Disjoint Sets: <br> Naive Implementations 

## Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg<br>Russian Academy of Sciences

## Data Structures <br> Data Structures and Algorithms

## Outline

(1) Overview
(2) Naive Implementations

Maze: Is B Reachable from A?


## Definition

A disjoint-set data structure supports the following operations:

- MakeSet $(x)$ creates a singleton set $\{x\}$


## Definition

A disjoint-set data structure supports the following operations:

- MakeSet $(x)$ creates a singleton set $\{x\}$
- $\operatorname{Find}(x)$ returns ID of the set containing $x$ :


## Definition

A disjoint-set data structure supports the following operations:

- MakeSet $(x)$ creates a singleton set $\{x\}$
- Find $(x)$ returns ID of the set containing $x$ :
- if $x$ and $y$ lie in the same set, then $\operatorname{Find}(x)=\operatorname{Find}(y)$


## Definition

A disjoint-set data structure supports the following operations:

- MakeSet $(x)$ creates a singleton set $\{x\}$
- Find $(x)$ returns ID of the set containing $x$ :
- if $x$ and $y$ lie in the same set, then $\operatorname{Find}(x)=\operatorname{Find}(y)$
- otherwise, $\operatorname{Find}(x) \neq \operatorname{Find}(y)$


## Definition

A disjoint-set data structure supports the following operations:

- MakeSet $(x)$ creates a singleton set $\{x\}$
- Find $(x)$ returns ID of the set containing $x$ :
- if $x$ and $y$ lie in the same set, then $\operatorname{Find}(x)=\operatorname{Find}(y)$
- otherwise, $\operatorname{Find}(x) \neq \operatorname{Find}(y)$
$■$ Union $(x, y)$ merges two sets containing $x$ and $y$


## Preprocess(maze)

for each cell c in maze: MakeSet(c)
for each cell c in maze: for each neighbor $n$ of $c$ : Union( $c, n$ )

## Preprocess(maze)

for each cell c in maze: MakeSet(c)
for each cell $c$ in maze: for each neighbor $n$ of $c$ : Union( $c, n$ )

IsReachable $(A, B)$
return $\operatorname{Find}(A)=\operatorname{Find}(B)$

Building a Network

## Building a Network

MakeSet(1)

## Building a Network

MakeSet(2)

## Building a Network



MakeSet(3)

## Building a Network



MakeSet(4)

## Building a Network



2

Find $(1)=\operatorname{Find}(2) \rightarrow$ False

## Building a Network



2

## Building a Network



2

Union(3, 4)

## Building a Network



## Outline

## (1) Overview

(2) Naive Implementations

For simplicity, we assume that our $n$ objects are just integers $1,2, \ldots, n$.

# Using the Smallest Element as ID 

■ Use the smallest element of a set as its ID

## Using the Smallest Element as ID

- Use the smallest element of a set as its ID
■ Use array smallest[1...n]: smallest[i] stores the smallest element in the set $i$ belongs to


## Example

$$
\begin{aligned}
& \{9,3,2,4,7\} \quad\{5\} \quad\{6,1,8\} \\
& \begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array} \\
& \text { smallest } \begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 2 & 2 & 5 & 1 & 2 & 1 & 2 \\
\hline
\end{array}
\end{aligned}
$$

## MakeSet(i)

 smallest $[i] \leftarrow i$ Find $(i)$return smallest[i]

## MakeSet(i)

smallest $[i] \leftarrow i$
Find $(i)$
return smallest[i]
Running time: $O(1)$

## Union( $i, j)$

$i \_i d \leftarrow$ Find $(i)$
$j \_i d \leftarrow$ Find $(j)$
if i_id=j_id:
return
$m \leftarrow \min \left(i \_i d, j_{-} i d\right)$
for $k$ from 1 to $n$ :
if smallest[k] in $\left\{i \_i d, j \_i d\right\}:$
smallest $[k] \leftarrow m$

## Union( $i, j)$

i_id $\leftarrow$ Find $(i)$
$j \_i d \leftarrow \operatorname{Find}(j)$
if i_id=j_id:
return
$m \leftarrow \min \left(i \_i d, j \_i d\right)$
for $k$ from 1 to $n$ :
if smallest[k] in $\left\{i \_i d, j \_i d\right\}:$
smallest $[k] \leftarrow m$

Running time: $O(n)$

## ■ Current bottleneck: Union

- Current bottleneck: Union
- What basic data structure allows for efficient merging?
- Current bottleneck: Union
- What basic data structure allows for efficient merging?
■ Linked list!
- Current bottleneck: Union
- What basic data structure allows for efficient merging?
■ Linked list!
■ Idea: represent a set as a linked list, use the list tail as ID of the set

Example: merging two lists

$$
9 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow
$$

$$
6 \rightarrow 1 \rightarrow 8 \rightarrow
$$

Example: merging two lists


- Pros:
- Pros:
- Running time of Union is $O(1)$
- Pros:
- Running time of Union is $O(1)$
- Well-defined ID
- Pros:
- Running time of Union is $O(1)$

■ Well-defined ID

- Cons:
- Pros:
- Running time of Union is $O(1)$

■ Well-defined ID

- Cons:
- Running time of Find is $O(n)$ as we need to traverse the list to find its tail
- Pros:
- Running time of Union is $O(1)$

■ Well-defined ID

- Cons:
- Running time of Find is $O(n)$ as we need to traverse the list to find its tail
- Union $(x, y)$ works in time $O(1)$ only if we can get the tail of the list of $x$ and the head of the list of $y$ in constant time!

Example: merging two lists


Example: merging two lists


## Example: merging two lists



Find(9) goes through all elements

## Example: merging two lists


can we merge in a different way?

Example: merging two lists


Example: merging two lists


Example: merging two lists

instead of a list we get a tree

## Example: merging two lists


we'll see that representing sets as trees gives a very efficient implementation: nearly constant amortized time for all operations

