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Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}

Find(x) returns ID of the set
containing x :

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x , y) merges two sets containing
x and y
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Preprocess(maze)

for each cell c in maze:
MakeSet(c)

for each cell c in maze:
for each neighbor n of c:

Union(c, n)

IsReachable(A,B)

return Find(A) = Find(B)
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For simplicity, we assume that our n objects
are just integers 1, 2, . . . , n.



Using the Smallest Element as ID

Use the smallest element of a set as
its ID

Use array smallest[1 . . . n]:
smallest[i ] stores the smallest element
in the set i belongs to
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Example

{9, 3, 2, 4, 7} {5} {6, 1, 8}

1 2 3 4 5 6 7 8 9
1 2 2 2 5 1 2 1 2smallest



MakeSet(i)

smallest[i ]← i

Find(i)

return smallest[i ]

Running time: O(1)
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Union(i , j)

i_id ← Find(i)
j_id ← Find(j)
if i_id = j_id:

return
m← min(i_id , j_id)
for k from 1 to n:

if smallest[k] in {i_id , j_id}:
smallest[k]← m

Running time: O(n)
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Current bottleneck: Union

What basic data structure allows for
efficient merging?
Linked list!
Idea: represent a set as a linked list, use
the list tail as ID of the set
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Pros:

Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we need
to traverse the list to find its tail
Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Pros:
Running time of Union is O(1)

Well-defined ID
Cons:

Running time of Find is O(n) as we need
to traverse the list to find its tail
Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we need
to traverse the list to find its tail
Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we need
to traverse the list to find its tail
Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:
Running time of Find is O(n) as we need
to traverse the list to find its tail

Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:
Running time of Find is O(n) as we need
to traverse the list to find its tail
Union(x , y) works in time O(1) only if we
can get the tail of the list of x and the
head of the list of y in constant time!



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1

Find(9) goes through all elements



Example: merging two lists
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can we merge in a different way?
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Example: merging two lists
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instead of a list we get a tree



Example: merging two lists

79 3 2 4

86 1

we’ll see that representing sets as
trees gives a very efficient im-
plementation: nearly constant

amortized time for all operations
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