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MakeSet(i)
parent[i ]← i

Running time: O(1)

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i

Running time: O(tree height)
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How to merge two trees?

Hang one of the trees under the root of
the other one
Which one to hang?
A shorter one, since we would like to
keep the trees shallow
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When merging two trees we hang a
shorter one under the root of a taller one

To quickly find a height of a tree, we
will keep the height of each subtree in
an array rank[1 . . . n]: rank[i ] is the
height of the subtree whose root is i
(The reason we call it rank, but not
height will become clear later)
Hanging a shorter tree under a taller one
is called a union by rank heuristic
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MakeSet(i)
parent[i ]← i

rank[i ]← 0

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i



Union(i , j)

i_id ← Find(i)
j_id ← Find(j)
if i_id = j_id:

return
if rank[i_id ] > rank[j_id ]:

parent[j_id ]← i_id
else:

parent[i_id ]← j_id
if rank[i_id ] = rank[j_id ]:

rank[j_id ]← rank[j_id ] + 1
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. . .
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Example

Query:

1 2 3 4 5 6
parent 1 4 1 1 4 1
rank 2 0 0 1 0 0

1

4

2 5

3 6



Important property: for any node i , rank[i ] is
equal to the height of the tree rooted at i



Lemma
The height of any tree in the forest is at
most log2 n.

Follows from the following lemma.
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Proof
Induction on k .

Base: initially, a tree has height 0 and
one node: 20 = 1.
Step: a tree of height k results from
merging two trees of height k − 1. By
induction hypothesis, each of two trees
has at least 2k−1 nodes, hence the
resulting tree contains at least 2k

nodes.



Summary

The union by rank heuristic guarantees that
Union and Find work in time O(log n).

Next part

We’ll discover another heuristic that improves
the running time to nearly constant!
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the resulting heuristic is
called path compression



Find(i)

if i ̸= parent[i ]:
parent[i ]← Find(parent[i ])

return parent[i]



Definition
The iterated logarithm of n, log* n, is the
number of times the logarithm function
needs to be applied to n before the result is
less or equal than 1.



Example

n log* n

n = 1 0
n = 2 1
n ∈ {3, 4} 2
n ∈ {5, 6, . . . , 16} 3
n ∈ {17, . . . , 65536} 4
n ∈ {65537, . . . , 265536} 5



Lemma
Assume that initially the data structure is
empty. We make a sequence of m operations
including n calls to MakeSet. Then the total
running time is O(m log* n).



In other words
The amortized time of a single operation is
O(log* n).

Nearly constant!

For practical values of n, log* n ≤ 5.
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Goal
Prove that when both union by rank heuristic
and path compression heuristic are used, the
average running time of each operation is
nearly constant.



Height ≤ Rank

When using path compression, rank[i ]
is no longer equal to the height of the
subtree rooted at i

Still, the height of the subtree rooted at
i is at most rank[i ]
And it is still true that a root node of
rank k has at least 2k nodes in its
subtree: a root node is not affected by
path compression
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Important Properties

1 There are at most n
2k nodes of rank k

2 For any node i ,
rank[i ] < rank[parent[i ]]

3 Once an internal node, always an
internal node
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T (all calls to Find) =
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#(i → j : j is a root)+
#(i → j : log*(rank[i ]) < log*(rank[j ]))+
#(i → j : log*(rank[i ]) = log*(rank[j ]))
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Claim
#(i → j : j is a root) ≤ O(m)

Proof
There are at most m calls to Find.
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Claim
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≤ O(m log* n)

Proof
There are at most log* n different values for
log*(rank).
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Claim

#(i → j : log*(rank[i ]) = log*(rank[j ])) ≤
O(n log* n)



Proof

assume rank[i ] ∈ {k + 1, . . . , 2k}

the number of nodes with rank lying in this
interval is at most

n

2k+1 +
n

2k+2 + · · · ≤ n

2k

after a call to Find(i), the node i is adopted by
a new parent of strictly larger rank

after at most 2k calls to Find(i), the parent of
i will have rank from a different interval
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Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}

each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n

thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Summary
Represent each set as a rooted tree

Use the root of the set as its ID
Union by rank heuristic: hang a shorter
tree under the root of a taller one
Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root
Amortized running time: O(log* n)
(constant for practical values of n)
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