
Disjoint Sets:
Efficient Implementations

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Data Structures
Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT


Outline

1 Trees

2 Union by Rank

3 Path Compression

4 Analysis



Represent each set as a rooted tree

ID of a set is the root of the tree
Use array parent[1 . . . n]: parent[i ] is
the parent of i , or i if it is the root



Represent each set as a rooted tree
ID of a set is the root of the tree

Use array parent[1 . . . n]: parent[i ] is
the parent of i , or i if it is the root



Represent each set as a rooted tree
ID of a set is the root of the tree
Use array parent[1 . . . n]: parent[i ] is
the parent of i , or i if it is the root



Example

5 6 4

8 1 2 3 9

7



Example

5 6 4

8 1 2 3 9

7

1 2 3 4 5 6 7 8 9
6 4 4 4 5 6 9 6 4parent



MakeSet(i)
parent[i ]← i

Running time: O(1)

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i

Running time: O(tree height)



MakeSet(i)
parent[i ]← i

Running time: O(1)

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i

Running time: O(tree height)



MakeSet(i)
parent[i ]← i

Running time: O(1)

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i

Running time: O(tree height)



MakeSet(i)
parent[i ]← i

Running time: O(1)

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i

Running time: O(tree height)



How to merge two trees?

Hang one of the trees under the root of
the other one
Which one to hang?
A shorter one, since we would like to
keep the trees shallow



How to merge two trees?
Hang one of the trees under the root of
the other one

Which one to hang?
A shorter one, since we would like to
keep the trees shallow



How to merge two trees?
Hang one of the trees under the root of
the other one
Which one to hang?

A shorter one, since we would like to
keep the trees shallow



How to merge two trees?
Hang one of the trees under the root of
the other one
Which one to hang?
A shorter one, since we would like to
keep the trees shallow



6 4

8 1 2 3 9

7

6

48 1

2 3 9

7

4

6

8 1

2 3 9

7



6 4

8 1 2 3 9

7
Union(3,8)

6

48 1

2 3 9

7

4

6

8 1

2 3 9

7



6 4

8 1 2 3 9

7
Union(3,8)

6

48 1

2 3 9

7

4

6

8 1

2 3 9

7



6 4

8 1 2 3 9

7
Union(3,8)

6

48 1

2 3 9

7

4

6

8 1

2 3 9

7



6 4

8 1 2 3 9

7
Union(3,8)

6

48 1

2 3 9

7

4

6

8 1

2 3 9

7

Bad... Good!



Outline

1 Trees

2 Union by Rank

3 Path Compression

4 Analysis



When merging two trees we hang a
shorter one under the root of a taller one

To quickly find a height of a tree, we
will keep the height of each subtree in
an array rank[1 . . . n]: rank[i ] is the
height of the subtree whose root is i
(The reason we call it rank, but not
height will become clear later)
Hanging a shorter tree under a taller one
is called a union by rank heuristic



When merging two trees we hang a
shorter one under the root of a taller one
To quickly find a height of a tree, we
will keep the height of each subtree in
an array rank[1 . . . n]: rank[i ] is the
height of the subtree whose root is i

(The reason we call it rank, but not
height will become clear later)
Hanging a shorter tree under a taller one
is called a union by rank heuristic



When merging two trees we hang a
shorter one under the root of a taller one
To quickly find a height of a tree, we
will keep the height of each subtree in
an array rank[1 . . . n]: rank[i ] is the
height of the subtree whose root is i
(The reason we call it rank, but not
height will become clear later)

Hanging a shorter tree under a taller one
is called a union by rank heuristic



When merging two trees we hang a
shorter one under the root of a taller one
To quickly find a height of a tree, we
will keep the height of each subtree in
an array rank[1 . . . n]: rank[i ] is the
height of the subtree whose root is i
(The reason we call it rank, but not
height will become clear later)
Hanging a shorter tree under a taller one
is called a union by rank heuristic



MakeSet(i)
parent[i ]← i

rank[i ]← 0

Find(i)
while i ̸= parent[i ]:

i ← parent[i ]
return i



Union(i , j)

i_id ← Find(i)
j_id ← Find(j)
if i_id = j_id:

return
if rank[i_id ] > rank[j_id ]:

parent[j_id ]← i_id
else:

parent[i_id ]← j_id
if rank[i_id ] = rank[j_id ]:

rank[j_id ]← rank[j_id ] + 1



Example

Query:

1 2 3 4 5 6
parent
rank



Example

Query:

1 2 3 4 5 6
parent
rank

MakeSet(1)
MakeSet(2)
. . .

MakeSet(6)



Example

Query:

1 2 3 4 5 6
parent 1 2 3 4 5 6
rank 0 0 0 0 0 0

1 2 3 4 5 6



Example

Query:

1 2 3 4 5 6
parent 1 2 3 4 5 6
rank 0 0 0 0 0 0

1 2 3 4 5 6
Union(2, 4)



Example

Query:

1 2 3 4 5 6
parent 1 4 3 4 5 6
rank 0 0 0 1 0 0

1 3 4 5 6

2



Example

Query:

1 2 3 4 5 6
parent 1 4 3 4 5 6
rank 0 0 0 1 0 0

1 3 4 5 6

2Union(5, 2)



Example

Query:

1 2 3 4 5 6
parent 1 4 3 4 4 6
rank 0 0 0 1 0 0

1 3 4 6

2 5



Example

Query:

1 2 3 4 5 6
parent 1 4 3 4 4 6
rank 0 0 0 1 0 0

1 3 4 6

2 5Union(3, 1)



Example

Query:

1 2 3 4 5 6
parent 1 4 1 4 4 6
rank 1 0 0 1 0 0

1 4 6

2 53



Example

Query:

1 2 3 4 5 6
parent 1 4 1 4 4 6
rank 1 0 0 1 0 0

1 4 6

2 53Union(2, 3)



Example

Query:

1 2 3 4 5 6
parent 1 4 1 1 4 6
rank 2 0 0 1 0 0

1 6

4

2 5

3



Example

Query:

1 2 3 4 5 6
parent 1 4 1 1 4 6
rank 2 0 0 1 0 0

1 6

4

2 5

3Union(2, 6)



Example

Query:

1 2 3 4 5 6
parent 1 4 1 1 4 1
rank 2 0 0 1 0 0

1

4

2 5

3 6



Important property: for any node i , rank[i ] is
equal to the height of the tree rooted at i



Lemma
The height of any tree in the forest is at
most log2 n.

Follows from the following lemma.

Lemma
Any tree of height k in the forest has at least
2k nodes.



Lemma
The height of any tree in the forest is at
most log2 n.

Follows from the following lemma.

Lemma
Any tree of height k in the forest has at least
2k nodes.



Proof
Induction on k .

Base: initially, a tree has height 0 and
one node: 20 = 1.
Step: a tree of height k results from
merging two trees of height k − 1. By
induction hypothesis, each of two trees
has at least 2k−1 nodes, hence the
resulting tree contains at least 2k

nodes.



Summary

The union by rank heuristic guarantees that
Union and Find work in time O(log n).

Next part

We’ll discover another heuristic that improves
the running time to nearly constant!



Summary

The union by rank heuristic guarantees that
Union and Find work in time O(log n).

Next part

We’ll discover another heuristic that improves
the running time to nearly constant!



Outline

1 Trees

2 Union by Rank

3 Path Compression

4 Analysis



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

5

310 9

12 27 4

6 8

1 11

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11
Find(6) traverses the path
from 6 to the root

5

310 9

12 27 4

6 8

1 11

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

Find(6) traverses the path
from 6 to the root

5

310 9

12 27 4

6 8

1 11

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

5

310 9

12 27 4

6 8

1 11
not only it finds the root
for 6, it does so for all the
nodes on this path

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

5

310 9

12 27 4

6 8

1 11
let’s not lose this useful info

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

5

310 9

12 27 4

6 8

1 11

5

310 9

27 4

126

1 11 8



Path Compression: Intuition

5

310 9

12 27 4

6 8

1 11

5

310 9

12 27 4

6 8

1 11

5

310 9

27 4

126

1 11 8

the resulting heuristic is
called path compression



Find(i)

if i ̸= parent[i ]:
parent[i ]← Find(parent[i ])

return parent[i]



Definition
The iterated logarithm of n, log* n, is the
number of times the logarithm function
needs to be applied to n before the result is
less or equal than 1.



Example

n log* n

n = 1 0
n = 2 1
n ∈ {3, 4} 2
n ∈ {5, 6, . . . , 16} 3
n ∈ {17, . . . , 65536} 4
n ∈ {65537, . . . , 265536} 5



Lemma
Assume that initially the data structure is
empty. We make a sequence of m operations
including n calls to MakeSet. Then the total
running time is O(m log* n).



In other words
The amortized time of a single operation is
O(log* n).

Nearly constant!

For practical values of n, log* n ≤ 5.



In other words
The amortized time of a single operation is
O(log* n).

Nearly constant!

For practical values of n, log* n ≤ 5.



Outline

1 Trees

2 Union by Rank

3 Path Compression

4 Analysis



Goal
Prove that when both union by rank heuristic
and path compression heuristic are used, the
average running time of each operation is
nearly constant.



Height ≤ Rank

When using path compression, rank[i ]
is no longer equal to the height of the
subtree rooted at i

Still, the height of the subtree rooted at
i is at most rank[i ]
And it is still true that a root node of
rank k has at least 2k nodes in its
subtree: a root node is not affected by
path compression



Height ≤ Rank

When using path compression, rank[i ]
is no longer equal to the height of the
subtree rooted at i
Still, the height of the subtree rooted at
i is at most rank[i ]

And it is still true that a root node of
rank k has at least 2k nodes in its
subtree: a root node is not affected by
path compression



Height ≤ Rank

When using path compression, rank[i ]
is no longer equal to the height of the
subtree rooted at i
Still, the height of the subtree rooted at
i is at most rank[i ]
And it is still true that a root node of
rank k has at least 2k nodes in its
subtree: a root node is not affected by
path compression



Important Properties

1 There are at most n
2k nodes of rank k

2 For any node i ,
rank[i ] < rank[parent[i ]]

3 Once an internal node, always an
internal node



Important Properties

1 There are at most n
2k nodes of rank k

2 For any node i ,
rank[i ] < rank[parent[i ]]

3 Once an internal node, always an
internal node



Important Properties

1 There are at most n
2k nodes of rank k

2 For any node i ,
rank[i ] < rank[parent[i ]]

3 Once an internal node, always an
internal node



T (all calls to Find) =
#(i → j) =

#(i → j : j is a root)+
#(i → j : log*(rank[i ]) < log*(rank[j ]))+
#(i → j : log*(rank[i ]) = log*(rank[j ]))



T (all calls to Find) =
#(i → j) =

#(i → j : j is a root)+
#(i → j : log*(rank[i ]) < log*(rank[j ]))+
#(i → j : log*(rank[i ]) = log*(rank[j ]))

2921
17

14
10

3
1



T (all calls to Find) =
#(i → j) =

#(i → j : j is a root)+
#(i → j : log*(rank[i ]) < log*(rank[j ]))+
#(i → j : log*(rank[i ]) = log*(rank[j ]))

2921
17

14
10

3
1



Claim
#(i → j : j is a root) ≤ O(m)

Proof
There are at most m calls to Find.



Claim
#(i → j : j is a root) ≤ O(m)

Proof
There are at most m calls to Find.



Claim

#(i → j : log*(rank[i ]) < log*(rank[j ]))
≤ O(m log* n)

Proof
There are at most log* n different values for
log*(rank).



Claim

#(i → j : log*(rank[i ]) < log*(rank[j ]))
≤ O(m log* n)

Proof
There are at most log* n different values for
log*(rank).



Claim

#(i → j : log*(rank[i ]) = log*(rank[j ])) ≤
O(n log* n)



Proof

assume rank[i ] ∈ {k + 1, . . . , 2k}

the number of nodes with rank lying in this
interval is at most

n

2k+1 +
n

2k+2 + · · · ≤ n

2k

after a call to Find(i), the node i is adopted by
a new parent of strictly larger rank

after at most 2k calls to Find(i), the parent of
i will have rank from a different interval



Proof

assume rank[i ] ∈ {k + 1, . . . , 2k}

the number of nodes with rank lying in this
interval is at most

n

2k+1 +
n

2k+2 + · · · ≤ n

2k

after a call to Find(i), the node i is adopted by
a new parent of strictly larger rank

after at most 2k calls to Find(i), the parent of
i will have rank from a different interval



Proof

assume rank[i ] ∈ {k + 1, . . . , 2k}

the number of nodes with rank lying in this
interval is at most

n

2k+1 +
n

2k+2 + · · · ≤ n

2k

after a call to Find(i), the node i is adopted by
a new parent of strictly larger rank

after at most 2k calls to Find(i), the parent of
i will have rank from a different interval



Proof

assume rank[i ] ∈ {k + 1, . . . , 2k}

the number of nodes with rank lying in this
interval is at most

n

2k+1 +
n

2k+2 + · · · ≤ n

2k

after a call to Find(i), the node i is adopted by
a new parent of strictly larger rank

after at most 2k calls to Find(i), the parent of
i will have rank from a different interval



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}

each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n

thus, the contribution of all nodes is
O(n log* n)



Proof (Continued)

there are at most n
2k nodes with rank in

{k + 1, . . . , 2k}
each of them contributes at most 2k

the contribution of all the nodes with
rank from this interval is at most O(n)

the number of different intervals is log* n
thus, the contribution of all nodes is
O(n log* n)



Summary
Represent each set as a rooted tree

Use the root of the set as its ID
Union by rank heuristic: hang a shorter
tree under the root of a taller one
Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root
Amortized running time: O(log* n)
(constant for practical values of n)



Summary
Represent each set as a rooted tree
Use the root of the set as its ID

Union by rank heuristic: hang a shorter
tree under the root of a taller one
Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root
Amortized running time: O(log* n)
(constant for practical values of n)



Summary
Represent each set as a rooted tree
Use the root of the set as its ID
Union by rank heuristic: hang a shorter
tree under the root of a taller one

Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root
Amortized running time: O(log* n)
(constant for practical values of n)



Summary
Represent each set as a rooted tree
Use the root of the set as its ID
Union by rank heuristic: hang a shorter
tree under the root of a taller one
Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root

Amortized running time: O(log* n)
(constant for practical values of n)



Summary
Represent each set as a rooted tree
Use the root of the set as its ID
Union by rank heuristic: hang a shorter
tree under the root of a taller one
Path compression heuristic: when
finding the root of a tree for a particular
node, reattach each node from the
traversed path to the root
Amortized running time: O(log* n)
(constant for practical values of n)


	Trees
	Union by Rank
	Path Compression
	Analysis

