
Introduction:

Michael Levin
Hash Tables

Data Structures and Algorithms
Algorithmic Toolbox

https://goo.gl/KAfKJT
https://goo.gl/E7KCxb

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Programming Languages

dict

HashMap

for, if, while, int

Programming Languages

dict

HashMap

for, if, while, int

Programming Languages

dict

HashMap

for, if, while, int

Programming Languages

dict

HashMap

for, if, while, int

File Systems

Password Verification

Storage Optimization

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Web Service

173.194.71.102 69.171.230.68 91.210.105.134

232 = 4294967296
IP addresses

2128 IPv6 addresses —
number with 39 digits!

Web Service

173.194.71.102 69.171.230.68 91.210.105.134

232 = 4294967296
IP addresses

2128 IPv6 addresses —
number with 39 digits!

Web Service

173.194.71.102 69.171.230.68 91.210.105.134

232 = 4294967296
IP addresses

2128 IPv6 addresses —
number with 39 digits!

Web Service

173.194.71.102 69.171.230.68 91.210.105.134

232 = 4294967296
IP addresses

2128 IPv6 addresses —
number with 39 digits!

Access Log

Date Time IP address
09 Dec 2015 00:45:13 173.194.71.102
09 Dec 2015 00:45:15 69.171.230.68

...

...
09 Dec 2015 01:45:13 91.210.105.134

IP Access List
Analyse the access log and quickly answer
queries: did anybody access the service from
this IP during the last hour? How many
times? How many IPs were used to access
the service during the last hour?

Log Processing

1h of logs can contain millions of lines

Too slow to process that for each query
Keep count: how many times each IP
appears in the last 1h of the access log
C is some data structure to store the
mapping from IPs to counters
We will learn later how to implement C

Log Processing

1h of logs can contain millions of lines
Too slow to process that for each query

Keep count: how many times each IP
appears in the last 1h of the access log
C is some data structure to store the
mapping from IPs to counters
We will learn later how to implement C

Log Processing

1h of logs can contain millions of lines
Too slow to process that for each query
Keep count: how many times each IP
appears in the last 1h of the access log

C is some data structure to store the
mapping from IPs to counters
We will learn later how to implement C

Log Processing

1h of logs can contain millions of lines
Too slow to process that for each query
Keep count: how many times each IP
appears in the last 1h of the access log
C is some data structure to store the
mapping from IPs to counters

We will learn later how to implement C

Log Processing

1h of logs can contain millions of lines
Too slow to process that for each query
Keep count: how many times each IP
appears in the last 1h of the access log
C is some data structure to store the
mapping from IPs to counters
We will learn later how to implement C

Log Processing

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68

... ...
01:45:13 173.194.71.102
01:45:13 91.210.105.134

Now

Increment counter

1 hour ago

Decrement counter

Log Processing

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68

... ...
01:45:13 173.194.71.102
01:45:13 91.210.105.134

Now

Increment counter

1 hour ago

Decrement counter

Log Processing

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68

... ...
01:45:13 173.194.71.102
01:45:13 91.210.105.134

Now

Increment counter

1 hour ago

Decrement counter

Log Processing

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68

... ...
01:45:13 173.194.71.102
01:45:13 91.210.105.134

Now

Increment counter

1 hour ago

Decrement counter

Log Processing

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68

... ...
01:45:13 173.194.71.102
01:45:13 91.210.105.134

Now

Increment counter

1 hour ago

Decrement counter

Main Loop

log - array of log lines (time, IP)

C - mapping from IPs to counters
i - first unprocessed log line
j - first line in current 1h window
i ← 0
j ← 0
C ← ∅
Each second

UpdateAccessList(log , i , j ,C)

UpdateAccessList(log , i , j ,C)

while log [i].time ≤ Now():
C [log [i].IP]← C [log [i].IP] + 1
i ← i + 1

while log [j].time ≤ Now()− 3600:
C [log [j].IP]← C [log [j].IP]− 1
j ← j + 1

AccessedLastHour(IP ,C)

return C [IP] > 0

UpdateAccessList(log , i , j ,C)

while log [i].time ≤ Now():
C [log [i].IP]← C [log [i].IP] + 1
i ← i + 1

while log [j].time ≤ Now()− 3600:
C [log [j].IP]← C [log [j].IP]− 1
j ← j + 1

AccessedLastHour(IP ,C)

return C [IP] > 0

Coming Next

How to implement the mapping C?

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

UpdateAccessList(log , i , j ,C)

while log [i].time ≤ Now():
C [log [i].IP]← C [log [i].IP] + 1
i ← i + 1

while log [j].time ≤ Now()− 3600:
C [log [j].IP]← C [log [j].IP]− 1
j ← j + 1

AccessedLastHour(IP ,C)

return C [IP] > 0

Direct Addressing

Need a data structure for C

There are 232 different IP(v4) addresses
Convert IP to 32-bit integer
Create an integer array A of size 232

Use A[int(IP)] as C [IP]

Direct Addressing

Need a data structure for C
There are 232 different IP(v4) addresses

Convert IP to 32-bit integer
Create an integer array A of size 232

Use A[int(IP)] as C [IP]

Direct Addressing

Need a data structure for C
There are 232 different IP(v4) addresses
Convert IP to 32-bit integer

Create an integer array A of size 232

Use A[int(IP)] as C [IP]

Direct Addressing

Need a data structure for C
There are 232 different IP(v4) addresses
Convert IP to 32-bit integer
Create an integer array A of size 232

Use A[int(IP)] as C [IP]

Direct Addressing

Need a data structure for C
There are 232 different IP(v4) addresses
Convert IP to 32-bit integer
Create an integer array A of size 232

Use A[int(IP)] as C [IP]

int(IP)

int(0.0.0.1) = 1
int(172.16.254.1) = 2886794753

int(69.171.230.68) = 1168893508

int(IP)

int(0.0.0.1) = 1

int(172.16.254.1) = 2886794753

int(69.171.230.68) = 1168893508

int(IP)

int(0.0.0.1) = 1
int(172.16.254.1) = 2886794753

int(69.171.230.68) =

1168893508

int(IP)

int(0.0.0.1) = 1
int(172.16.254.1) = 2886794753
int(69.171.230.68) =

1168893508

int(IP)

int(0.0.0.1) = 1
int(172.16.254.1) = 2886794753
int(69.171.230.68) = 1168893508

int(IP)

return IP [1]·224+IP [2]·216+IP [3]·28+IP [4]

UpdateAccessList(log , i , j ,A)

while log [i].time ≤ Now():
A[int(log [i].IP)]← A[int(log [i].IP)] + 1
i ← i + 1

while log [j].time ≤ Now()− 3600:
A[int(log [j].IP)]← A[int(log [j].IP)]− 1
j ← j + 1

int(IP)

return IP [1]·224+IP [2]·216+IP [3]·28+IP [4]

UpdateAccessList(log , i , j ,A)

while log [i].time ≤ Now():
A[int(log [i].IP)]← A[int(log [i].IP)] + 1
i ← i + 1

while log [j].time ≤ Now()− 3600:
A[int(log [j].IP)]← A[int(log [j].IP)]− 1
j ← j + 1

AccessedLastHour(IP)

return A[int(IP)] > 0

Asymptotics

UpdateAccessList is O(1) per log line

AccessedLastHour is O(1)
But need 232 memory even for few IPs
IPv6: 2128 won’t fit in memory
In general: O(N) memory, N = |S |

Asymptotics

UpdateAccessList is O(1) per log line
AccessedLastHour is O(1)

But need 232 memory even for few IPs
IPv6: 2128 won’t fit in memory
In general: O(N) memory, N = |S |

Asymptotics

UpdateAccessList is O(1) per log line
AccessedLastHour is O(1)
But need 232 memory even for few IPs

IPv6: 2128 won’t fit in memory
In general: O(N) memory, N = |S |

Asymptotics

UpdateAccessList is O(1) per log line
AccessedLastHour is O(1)
But need 232 memory even for few IPs
IPv6: 2128 won’t fit in memory

In general: O(N) memory, N = |S |

Asymptotics

UpdateAccessList is O(1) per log line
AccessedLastHour is O(1)
But need 232 memory even for few IPs
IPv6: 2128 won’t fit in memory
In general: O(N) memory, N = |S |

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Direct addressing requires too much
memory

Let’s store only active IPs
Store them in a list
Store only last occurrence of each IP
Keep the order of occurrence

Direct addressing requires too much
memory
Let’s store only active IPs

Store them in a list
Store only last occurrence of each IP
Keep the order of occurrence

Direct addressing requires too much
memory
Let’s store only active IPs
Store them in a list

Store only last occurrence of each IP
Keep the order of occurrence

Direct addressing requires too much
memory
Let’s store only active IPs
Store them in a list
Store only last occurrence of each IP

Keep the order of occurrence

Direct addressing requires too much
memory
Let’s store only active IPs
Store them in a list
Store only last occurrence of each IP
Keep the order of occurrence

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.6869.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.6869.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.68

69.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.6869.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.68

69.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.68

69.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.68

69.171.230.68

173.194.71.102

91.210.105.134

Access Log

Time IP address
00:45:13 173.194.71.102
00:45:13 69.171.230.68
01:00:00 69.171.230.68
01:45:13 173.194.71.102
01:45:13 91.210.105.134

173.194.71.102

69.171.230.68

69.171.230.68

173.194.71.102

91.210.105.134

UpdateAccessList(log , i , L)

while log [i].time ≤ Now():
log_line ← L.FindByIP(log [i].IP)
if log_line ̸= NULL:

L.Erase(log_line)
L.Append(log [i])
i ← i + 1

while L.Top().time ≤ Now()− 3600:
L.Pop()

AccessedLastHour(IP , L)

return L.FindByIP(IP) ̸= NULL

Asymptotics

n is number of active IPs

Memory usage is Θ(n)
L.Append, L.Top, L.Pop are Θ(1)
L.Find and L.Erase are Θ(n)
UpdateAccessList is Θ(n) per log line
AccessedLastHour is Θ(n)

Asymptotics

n is number of active IPs
Memory usage is Θ(n)

L.Append, L.Top, L.Pop are Θ(1)
L.Find and L.Erase are Θ(n)
UpdateAccessList is Θ(n) per log line
AccessedLastHour is Θ(n)

Asymptotics

n is number of active IPs
Memory usage is Θ(n)
L.Append, L.Top, L.Pop are Θ(1)

L.Find and L.Erase are Θ(n)
UpdateAccessList is Θ(n) per log line
AccessedLastHour is Θ(n)

Asymptotics

n is number of active IPs
Memory usage is Θ(n)
L.Append, L.Top, L.Pop are Θ(1)
L.Find and L.Erase are Θ(n)

UpdateAccessList is Θ(n) per log line
AccessedLastHour is Θ(n)

Asymptotics

n is number of active IPs
Memory usage is Θ(n)
L.Append, L.Top, L.Pop are Θ(1)
L.Find and L.Erase are Θ(n)
UpdateAccessList is Θ(n) per log line

AccessedLastHour is Θ(n)

Asymptotics

n is number of active IPs
Memory usage is Θ(n)
L.Append, L.Top, L.Pop are Θ(1)
L.Find and L.Erase are Θ(n)
UpdateAccessList is Θ(n) per log line
AccessedLastHour is Θ(n)

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Encoding IPs

Encode IPs with small numbers

I.e. numbers from 0 to 999
Different codes for currently active IPs

Encoding IPs

Encode IPs with small numbers
I.e. numbers from 0 to 999

Different codes for currently active IPs

Encoding IPs

Encode IPs with small numbers
I.e. numbers from 0 to 999
Different codes for currently active IPs

Hash Function

Definition
For any set of objects S and any integer
m > 0, a function h : S → {0, 1, . . . ,m− 1}
is called a hash function.

Definition
m is called the cardinality of hash function h.

Hash Function

Definition
For any set of objects S and any integer
m > 0, a function h : S → {0, 1, . . . ,m− 1}
is called a hash function.

Definition
m is called the cardinality of hash function h.

Desirable Properties

h should be fast to compute

Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m

Impossible to have all different values if
number of objects |S | is more than m

Desirable Properties

h should be fast to compute
Different values for different objects

Direct addressing with O(m) memory
Want small cardinality m

Impossible to have all different values if
number of objects |S | is more than m

Desirable Properties

h should be fast to compute
Different values for different objects
Direct addressing with O(m) memory

Want small cardinality m

Impossible to have all different values if
number of objects |S | is more than m

Desirable Properties

h should be fast to compute
Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m

Impossible to have all different values if
number of objects |S | is more than m

Desirable Properties

h should be fast to compute
Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m

Impossible to have all different values if
number of objects |S | is more than m

Collisions

Definition
When h(o1) = h(o2) and o1 ̸= o2, this is a
collision.

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Map
Store mapping from objects to other objects:

Filename → location of the file on disk
Student ID → student name
Contact name → contact phone number

Definition
Map from S to V is a data structure with
methods HasKey(O), Get(O), Set(O, v),
where O ∈ S , v ∈ V .

Map
Store mapping from objects to other objects:

Filename → location of the file on disk
Student ID → student name
Contact name → contact phone number

Definition
Map from S to V is a data structure with
methods HasKey(O), Get(O), Set(O, v),
where O ∈ S , v ∈ V .

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1

69.171.230.68 1
h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

Chaining

0
1
2
3
4
5
6
7

h(173.194.71.102) = 4

173.194.71.102 1

h(69.171.230.68) = 1
69.171.230.68 1

h(173.194.71.102) = 4

173.194.71.102 2

h(91.210.105.134) = 4

91.210.105.134 1

h : S → {0, 1, . . . ,m − 1}
O,O ′ ∈ S

v , v ′ ∈ V

A← array of m lists (chains) of pairs (O, v)

HasKey(O)

L← A[h(O)]

for (O ′, v ′) in L:
if O ′ == O:

return true
return false

Get(O)

L← A[h(O)]

for (O ′, v ′) in L:
if O ′ == O:

return v ′

return n/a

Set(O, v)

L← A[h(O)]

for p in L:
if p.O == O:

p.v ← v

return
L.Append(O, v)

Lemma
Let c be the length of the longest chain in A.
Then the running time of HasKey, Get, Set
is Θ(c + 1).

Proof

If L = A[h(O)], len(L) = c,O /∈ L,
need to scan all c items
If c = 0, we still need O(1) time

Lemma
Let c be the length of the longest chain in A.
Then the running time of HasKey, Get, Set
is Θ(c + 1).

Proof

If L = A[h(O)], len(L) = c,O /∈ L,
need to scan all c items

If c = 0, we still need O(1) time

Lemma
Let c be the length of the longest chain in A.
Then the running time of HasKey, Get, Set
is Θ(c + 1).

Proof

If L = A[h(O)], len(L) = c,O /∈ L,
need to scan all c items
If c = 0, we still need O(1) time

Lemma
Let n be the number of different keys O
currently in the map and m be the cardinality
of the hash function. Then the memory
consumption for chaining is Θ(n +m).

Proof

Θ(n) to store n pairs (O, v)

Θ(m) to store array A of size m

Lemma
Let n be the number of different keys O
currently in the map and m be the cardinality
of the hash function. Then the memory
consumption for chaining is Θ(n +m).

Proof

Θ(n) to store n pairs (O, v)

Θ(m) to store array A of size m

Lemma
Let n be the number of different keys O
currently in the map and m be the cardinality
of the hash function. Then the memory
consumption for chaining is Θ(n +m).

Proof

Θ(n) to store n pairs (O, v)

Θ(m) to store array A of size m

Outline
1 Applications of Hashing

2 IP Addresses

3 Direct Addressing

4 List-based Mapping

5 Hash Functions

6 Chaining

7 Hash Tables

Set
Definition
Set is a data structure with methods
Add(O), Remove(O), Find(O).

Examples

IPs accessed during last hour
Students on campus
Keywords in a programming language

Set
Definition
Set is a data structure with methods
Add(O), Remove(O), Find(O).

Examples

IPs accessed during last hour

Students on campus
Keywords in a programming language

Set
Definition
Set is a data structure with methods
Add(O), Remove(O), Find(O).

Examples

IPs accessed during last hour
Students on campus

Keywords in a programming language

Set
Definition
Set is a data structure with methods
Add(O), Remove(O), Find(O).

Examples

IPs accessed during last hour
Students on campus
Keywords in a programming language

Implementing Set

Two ways to implement a set using chaining:
Set is equivalent to map from S to
V = {true, false}

Store just objects O instead of pairs
(O, v) in chains

Implementing Set

Two ways to implement a set using chaining:
Set is equivalent to map from S to
V = {true, false}
Store just objects O instead of pairs
(O, v) in chains

h : S → {0, 1, . . . ,m − 1}
O,O ′ ∈ S

A← array of m lists (chains) of objects O

Find(O)

L← A[h(O)]

for O ′ in L:
if O ′ == O:

return true
return false

Add(O)

L← A[h(O)]

for O ′ in L:
if O ′ == O:

return
L.Append(O)

Remove(O)

if not Find(O):
return

L← A[h(O)]

L.Erase(O)

Hash Table

Definition
An implementation of a set or a map using
hashing is called a hash table.

Programming Languages

Set:
unordered_set in C++
HashSet in Java
set in Python

Map:
unordered_map in C++
HashMap in Java
dict in Python

Conclusion

Chaining is a technique to implement a
hash table

Memory consumption is O(n +m)

Operations work in time O(c + 1)
How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Memory consumption is O(n +m)

Operations work in time O(c + 1)
How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Memory consumption is O(n +m)

Operations work in time O(c + 1)

How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Memory consumption is O(n +m)

Operations work in time O(c + 1)
How to make both m and c small?

	Applications of Hashing
	IP Addresses
	Direct Addressing
	List-based Mapping
	Hash Functions
	Chaining
	Hash Tables

