
Hash Tables:

Distributed Hash

Tables

Michael Levin

Higher School of Economics

Data Structures

http://bit.ly/algospecialization

https://goo.gl/ZVOAWt
http://bit.ly/algospecialization


Outline

1 Online Storage Systems

2 Distributed Hash Tables



Have you ever wondered, how large �les

are sometimes uploaded instantly to

Dropbox?

Want to know how Dropbox, Google

Drive and Yandex Disk save petabytes of

storage using the ideas from this

module?

Interested in distributed storage?

This lesson



Have you ever wondered, how large �les

are sometimes uploaded instantly to

Dropbox?

Want to know how Dropbox, Google

Drive and Yandex Disk save petabytes of

storage using the ideas from this

module?

Interested in distributed storage?

This lesson



Have you ever wondered, how large �les

are sometimes uploaded instantly to

Dropbox?

Want to know how Dropbox, Google

Drive and Yandex Disk save petabytes of

storage using the ideas from this

module?

Interested in distributed storage?

This lesson



Have you ever wondered, how large �les

are sometimes uploaded instantly to

Dropbox?

Want to know how Dropbox, Google

Drive and Yandex Disk save petabytes of

storage using the ideas from this

module?

Interested in distributed storage?

This lesson



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



Storage optimization

Cat.avi

Kitty.avi

Mew.avi

Cat.avi

Kitty.avi

Mew.avi

66% of storage space saved!



New File Upload

Need to determine whether there is

already the same �le in the system



Naive Comparison

Upload new �le

Go through all stored �les

Compare each stored �le with new �le

byte-by-byte

If there's the same �le, store a link to it

instead of the new �le



Naive Comparison

Upload new �le

Go through all stored �les

Compare each stored �le with new �le

byte-by-byte

If there's the same �le, store a link to it

instead of the new �le



Naive Comparison

Upload new �le

Go through all stored �les

Compare each stored �le with new �le

byte-by-byte

If there's the same �le, store a link to it

instead of the new �le



Naive Comparison

Upload new �le

Go through all stored �les

Compare each stored �le with new �le

byte-by-byte

If there's the same �le, store a link to it

instead of the new �le



Drawbacks of Naive Comparison

Have to upload the �le �rst anyway

O(NS) to compare �le of size S with N

other �les

N grows, so total running time of

uploads grows as O(N2)



Drawbacks of Naive Comparison

Have to upload the �le �rst anyway

O(NS) to compare �le of size S with N

other �les

N grows, so total running time of

uploads grows as O(N2)



Drawbacks of Naive Comparison

Have to upload the �le �rst anyway

O(NS) to compare �le of size S with N

other �les

N grows, so total running time of

uploads grows as O(N2)



Idea: Compare Hashes

As in Rabin-Karp's algorithm, compare

hashes of �les �rst

If hashes are di�erent, �les are di�erent

If there's a �le with the same hash,

upload and compare directly



Idea: Compare Hashes

As in Rabin-Karp's algorithm, compare

hashes of �les �rst

If hashes are di�erent, �les are di�erent

If there's a �le with the same hash,

upload and compare directly



Idea: Compare Hashes

As in Rabin-Karp's algorithm, compare

hashes of �les �rst

If hashes are di�erent, �les are di�erent

If there's a �le with the same hash,

upload and compare directly



Drawbacks of Hash Comparison

There can be collisions

Still have to upload the �le to compare

directly

Still have to compare with all N stored

�les



Drawbacks of Hash Comparison

There can be collisions

Still have to upload the �le to compare

directly

Still have to compare with all N stored

�les



Drawbacks of Hash Comparison

There can be collisions

Still have to upload the �le to compare

directly

Still have to compare with all N stored

�les



Idea: Several Hashes

h1(�le) = 129876

h2(�le) = 198764

h3(�le) = 123087



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Idea: Several Hashes

Choose several di�erent hash functions

Polynomial hashing with di�erent p or x

Compute all hashes for each �le

If there's a �le with all the same hashes,

�les are probably equal

Don't upload the new �le in this case!

Compute hashes locally before upload



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: O(N) Comparisons

Still have to compare with N already

stored �les



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



Outline

1 Online Storage Systems

2 Distributed Hash Tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables



Distributed Hash Table

Get 1000 computers

Create a hash table on each of them

Determine which computer �owns�

object O: number h(O) mod 1000

Send request to that computer,

search/modify in the local hash table



Distributed Hash Table

Get 1000 computers

Create a hash table on each of them

Determine which computer �owns�

object O: number h(O) mod 1000

Send request to that computer,

search/modify in the local hash table



Distributed Hash Table

Get 1000 computers

Create a hash table on each of them

Determine which computer �owns�

object O: number h(O) mod 1000

Send request to that computer,

search/modify in the local hash table



Distributed Hash Table

Get 1000 computers

Create a hash table on each of them

Determine which computer �owns�

object O: number h(O) mod 1000

Send request to that computer,

search/modify in the local hash table



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Problems

Computers sometimes break

Computer breaks once in 2 years ⇒ one

of 1000 computers breaks every day!

Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works



Consistent Hashing

Choose hash function h with cardinality

m and put numbers from 0 to m − 1 on

a circle clockwise

Each object O is then mapped to a

point on the circle with number h(O)

Map computer IDs to the same circle:

compID → point number h(compID)



Consistent Hashing

Choose hash function h with cardinality

m and put numbers from 0 to m − 1 on

a circle clockwise

Each object O is then mapped to a

point on the circle with number h(O)

Map computer IDs to the same circle:

compID → point number h(compID)



Consistent Hashing

Choose hash function h with cardinality

m and put numbers from 0 to m − 1 on

a circle clockwise

Each object O is then mapped to a

point on the circle with number h(O)

Map computer IDs to the same circle:

compID → point number h(compID)





m = 12



m = 12

0 1
2
3
4

567
8
9
10
11



m = 12

0 1
2
3
4

567
8
9
10
11

Steve



m = 12

0 1
2
3
4

567
8
9
10
11

Steve

ID=253



Consistent Hashing

Each object is stored on the �closest�

computer

Each computer stores all objects falling

on some arc of the circle



Consistent Hashing

Each object is stored on the �closest�

computer

Each computer stores all objects falling

on some arc of the circle





ID=1

ID=2ID=3

ID=4

ID=5 ID=6



Computers In and Out

When a computer goes o�, �neighbors�

take its data

When a new computer is added, it takes

data from the �neighbors�



Computers In and Out

When a computer goes o�, �neighbors�

take its data

When a new computer is added, it takes

data from the �neighbors�



ID=1

ID=2ID=3

ID=4

ID=5 ID=6



ID=1

ID=2ID=3

ID=4

ID=5 ID=6



ID=1

ID=2ID=3

ID=4

ID=6



ID=1

ID=2ID=3

ID=4

ID=6



Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)



Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)



Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)



Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)



Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)









Conclusion

Distributed Hash Tables (DHT) store

Big Data on many computers

Consistent Hashing (CH) is one way to

determine which computer stores which

data

CH uses mapping of keys and computer

IDs on a circle

Each computer stores a range of keys

Overlay Network is used to route the

data to/from the right computer


	Online Storage Systems
	Distributed Hash Tables

