Hash Tables:
Distributed Hash
Tables

Michael Levin

Higher School of Economics

Data Structures
http://bit.ly /algospecialization


https://goo.gl/ZVOAWt
http://bit.ly/algospecialization

Outline

@ Online Storage Systems



m Have you ever wondered, how large files
are sometimes uploaded instantly to
Dropbox?



m Have you ever wondered, how large files
are sometimes uploaded instantly to
Dropbox?

m Want to know how Dropbox, Google
Drive and Yandex Disk save petabytes of
storage using the ideas from this
module?



m Have you ever wondered, how large files
are sometimes uploaded instantly to
Dropbox?

m Want to know how Dropbox, Google
Drive and Yandex Disk save petabytes of
storage using the ideas from this
module?

m Interested in distributed storage?



m Have you ever wondered, how large files
are sometimes uploaded instantly to
Dropbox?

m Want to know how Dropbox, Google
Drive and Yandex Disk save petabytes of
storage using the ideas from this
module?

m Interested in distributed storage?

m | his lesson



Storage optimization

P>



Storage optimization

P>

Catavi——>




Storage optimization

S L&

Cat.avi——

Kitty.avi




Storage optimization

P>

Cat.avi

Kitty.avi

Mew.avi




Storage optimization

P>

Cat.avi
Kitty.avi>
-

Mew.avi




Storage optimization

P>

Cat.avi
ity o
Mew.avi -/

66% of storage space saved!




New File Upload

Uploading 1 item

16 min left... CANCEL

M2U00642.MPG 9

m Need to determine whether there is
already the same file in the system



Naive Comparison

m Upload new file



Naive Comparison

m Upload new file

m Go through all stored files



Naive Comparison

m Upload new file
m Go through all stored files

m Compare each stored file with new file
byte-by-byte



Naive Comparison

m Upload new file

m Go through all stored files

m Compare each stored file with new file
byte-by-byte

m If there's the same file, store a link to it
instead of the new file



Drawbacks of Naive Comparison

m Have to upload the file first anyway



Drawbacks of Naive Comparison

m Have to upload the file first anyway

m O(NS) to compare file of size S with N
other files



Drawbacks of Naive Comparison

m Have to upload the file first anyway

m O(NS) to compare file of size S with N
other files

m N grows, so total running time of
uploads grows as O(N?)



|dea: Compare Hashes

m As in Rabin-Karp's algorithm, compare
hashes of files first



|dea: Compare Hashes

m As in Rabin-Karp's algorithm, compare
hashes of files first

m If hashes are different, files are different



|dea: Compare Hashes

m As in Rabin-Karp's algorithm, compare
hashes of files first

m If hashes are different, files are different

m If there's a file with the same hash,
upload and compare directly



Drawbacks of Hash Comparison

m | here can be collisions



Drawbacks of Hash Comparison

m | here can be collisions

m Still have to upload the file to compare
directly



Drawbacks of Hash Comparison

m | here can be collisions

m Still have to upload the file to compare
directly

m Still have to compare with all N stored
files



ldea: Several Hashes

7 hu(file) = 129876 «

g <—> hy(file) = 198764 <—> —

s hy(file) = 123087 ¢




ldea: Several Hashes

m Choose several different hash functions



ldea: Several Hashes

m Choose several different hash functions

m Polynomial hashing with different p or x



ldea: Several Hashes

m Choose several different hash functions
m Polynomial hashing with different p or x

m Compute all hashes for each file



ldea: Several Hashes

m Choose several different hash functions
m Polynomial hashing with different p or x
m Compute all hashes for each file

m If there's a file with all the same hashes,
files are probably equal



ldea: Several Hashes

m Choose several different hash functions
m Polynomial hashing with different p or x
m Compute all hashes for each file

m If there's a file with all the same hashes,
files are probably equal

m Don't upload the new file in this case!



ldea: Several Hashes

m Choose several different hash functions
m Polynomial hashing with different p or x
m Compute all hashes for each file

m If there's a file with all the same hashes,
files are probably equal

m Don't upload the new file in this case!

m Compute hashes locally before upload



Problem: Collisions

m Collisions can happen even for several
hashes simultaneously



Problem: Collisions

m Collisions can happen even for several
hashes simultaneously

m There are algorithms to find collisions
for known hash functions



Problem: Collisions

m Collisions can happen even for several
hashes simultaneously

m There are algorithms to find collisions
for known hash functions

m However, even for one hash function
collisions are extremely rare



Problem: Collisions

m Collisions can happen even for several
hashes simultaneously

m There are algorithms to find collisions
for known hash functions

m However, even for one hash function
collisions are extremely rare

m Using 3 or 5 hashes, you probably won't
see a collision in a lifetime



Problem: O(N) Comparisons

m Still have to compare with N already
stored files



|dea:Precompute Hashes

m When a file is submitted for upload,
hashes are computed anyway



|dea:Precompute Hashes

m When a file is submitted for upload,
hashes are computed anyway

m Store file addresses in a hash table



|dea:Precompute Hashes

m When a file is submitted for upload,
hashes are computed anyway

m Store file addresses in a hash table

m Also store all the hashes there



|dea:Precompute Hashes

m When a file is submitted for upload,
hashes are computed anyway

m Store file addresses in a hash table
m Also store all the hashes there

m Only need the hashes to search in the
table



Final Solution

m Choose 3 — 5 hash functions



Final Solution

m Choose 3 — 5 hash functions
m Store file addresses and hashes in a hash
table



Final Solution

m Choose 3 — 5 hash functions

m Store file addresses and hashes in a hash
table

m Compute the hashes of new file locally
before upload



Final Solution

m Choose 3 — 5 hash functions

m Store file addresses and hashes in a hash
table

m Compute the hashes of new file locally
before upload

m Search new file in the hash table



Final Solution

m Choose 3 — 5 hash functions

m Store file addresses and hashes in a hash
table

m Compute the hashes of new file locally
before upload

m Search new file in the hash table

m Search is successful if all the hashes
coincide



Final Solution

m Choose 3 — 5 hash functions

m Store file addresses and hashes in a hash
table

m Compute the hashes of new file locally
before upload

m Search new file in the hash table

m Search is successful if all the hashes
coincide

m Don't upload the file, store a link to the
existing one



More Problems

m Billions of files are uploaded daily



More Problems

m Billions of files are uploaded daily

m Trillions stored already



More Problems

m Billions of files are uploaded daily
m Trillions stored already

m Too big for a simple hash table



More Problems

m Billions of files are uploaded daily
m Trillions stored already
m Too big for a simple hash table

m Millions of users upload simultaneously



More Problems

m Billions of files are uploaded daily

m Trillions stored already

m Too big for a simple hash table

m Millions of users upload simultaneously

m Too many requests for a single table



More Problems

m Billions of files are uploaded daily

m Trillions stored already

m Too big for a simple hash table

m Millions of users upload simultaneously
m Too many requests for a single table

m See the next lecture



Outline

@® Distributed Hash Tables



Big Data

m Need to store trillions or more objects



Big Data

m Need to store trillions or more objects

m File addresses, user profiles, e-mails



Big Data

m Need to store trillions or more objects
m File addresses, user profiles, e-mails

m Need fast search/access



Big Data

Need to store trillions or more objects
File addresses, user profiles, e-mails
Need fast search/access

Hash tables provide O(1) search/access
on average, but for n = 102, O(n + m)
memory becomes too big



Big Data

Need to store trillions or more objects
File addresses, user profiles, e-mails
Need fast search/access

Hash tables provide O(1) search/access
on average, but for n = 102, O(n + m)
memory becomes too big

Solution: distributed hash tables



Distributed Hash Table

m Get 1000 computers



Distributed Hash Table

m Get 1000 computers

m Create a hash table on each of them



Distributed Hash Table

m Get 1000 computers
m Create a hash table on each of them

m Determine which computer “owns”

object O: number h(O) mod 1000



Distributed Hash Table

m Get 1000 computers
m Create a hash table on each of them

m Determine which computer “owns”

object O: number h(O) mod 1000

m Send request to that computer,
search/modify in the local hash table



Problems

m Computers sometimes break



Problems

m Computers sometimes break

m Computer breaks once in 2 years = one
of 1000 computers breaks every day!



Problems

m Computers sometimes break

m Computer breaks once in 2 years = one
of 1000 computers breaks every day!

m Store several copies of the data



Problems

m Computers sometimes break

m Computer breaks once in 2 years = one
of 1000 computers breaks every day!

m Store several copies of the data

m Need to relocate the data from the
broken computer



Problems

m Computers sometimes break

m Computer breaks once in 2 years = one
of 1000 computers breaks every day!

m Store several copies of the data

m Need to relocate the data from the
broken computer

m Service grows, and new computers are
added to the cluster



Problems

m Computers sometimes break

m Computer breaks once in 2 years = one
of 1000 computers breaks every day!

m Store several copies of the data

m Need to relocate the data from the
broken computer

m Service grows, and new computers are
added to the cluster

m h(O) mod 1000 no longer works



Consistent Hashing

m Choose hash function h with cardinality
m and put numbers from 0 to m — 1 on
a circle clockwise



Consistent Hashing

m Choose hash function h with cardinality
m and put numbers from 0 to m — 1 on
a circle clockwise

m Each object O is then mapped to a
point on the circle with number h(O)



Consistent Hashing

m Choose hash function h with cardinality
m and put numbers from 0 to m — 1 on
a circle clockwise

m Each object O is then mapped to a
point on the circle with number h(O)

m Map computer IDs to the same circle:
complD — point number h(complD)












Steve




Steve




Consistent Hashing

m Each object is stored on the “closest”
computer



Consistent Hashing

m Each object is stored on the “closest”
computer

m Each computer stores all objects falling
on some arc of the circle









Computers In and Out

m When a computer goes off, "neighbors”
take its data



Computers In and Out

m When a computer goes off, "neighbors”
take its data

m When a new computer is added, it takes
data from the "neighbors”















Overlay Network

m Need to copy/relocate data



Overlay Network

m Need to copy/relocate data

m How will a node know where to send the
data?



Overlay Network

m Need to copy/relocate data

m How will a node know where to send the
data?

m Each node will know a few neighbors



Overlay Network

m Need to copy/relocate data

m How will a node know where to send the
data?

m Each node will know a few neighbors

m For each key, each node will either store
it or know some node “closer” to this key



Overlay Network

m Need to copy/relocate data

m How will a node know where to send the
data?

m Each node will know a few neighbors

m For each key, each node will either store
it or know some node “closer” to this key

m E.g., each node knows neighbors,
+1, 42, +4, 48, ... — O(log n) nodes,
and can get/send any key in O(log n)












Conclusion

m Distributed Hash Tables (DHT) store
Big Data on many computers

m Consistent Hashing (CH) is one way to
determine which computer stores which
data

m CH uses mapping of keys and computer
IDs on a circle

m Each computer stores a range of keys

m Overlay Network is used to route the
data to/from the right computer



	Online Storage Systems
	Distributed Hash Tables

