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New File Upload
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Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: Collisions

Collisions can happen even for several

hashes simultaneously

There are algorithms to �nd collisions

for known hash functions

However, even for one hash function

collisions are extremely rare

Using 3 or 5 hashes, you probably won't

see a collision in a lifetime



Problem: O(N) Comparisons

Still have to compare with N already

stored �les



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Idea:Precompute Hashes

When a �le is submitted for upload,

hashes are computed anyway

Store �le addresses in a hash table

Also store all the hashes there

Only need the hashes to search in the

table



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



Final Solution

Choose 3− 5 hash functions

Store �le addresses and hashes in a hash

table

Compute the hashes of new �le locally

before upload

Search new �le in the hash table

Search is successful if all the hashes

coincide

Don't upload the �le, store a link to the

existing one



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



More Problems

Billions of �les are uploaded daily

Trillions stored already

Too big for a simple hash table

Millions of users upload simultaneously

Too many requests for a single table

See the next lecture



Outline

1 Online Storage Systems

2 Distributed Hash Tables



Big Data

Need to store trillions or more objects

File addresses, user pro�les, e-mails

Need fast search/access

Hash tables provide O(1) search/access

on average, but for n = 1012, O(n +m)

memory becomes too big

Solution: distributed hash tables
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Get 1000 computers

Create a hash table on each of them

Determine which computer �owns�

object O: number h(O) mod 1000

Send request to that computer,

search/modify in the local hash table
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Computers sometimes break

Computer breaks once in 2 years ⇒ one
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Store several copies of the data

Need to relocate the data from the

broken computer

Service grows, and new computers are

added to the cluster

h(O) mod 1000 no longer works
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Choose hash function h with cardinality

m and put numbers from 0 to m − 1 on

a circle clockwise

Each object O is then mapped to a

point on the circle with number h(O)

Map computer IDs to the same circle:

compID → point number h(compID)
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Overlay Network

Need to copy/relocate data

How will a node know where to send the

data?

Each node will know a few neighbors

For each key, each node will either store

it or know some node �closer� to this key

E.g., each node knows neighbors,

±1,±2,±4,±8, . . . � O(log n) nodes,

and can get/send any key in O(log n)
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Conclusion

Distributed Hash Tables (DHT) store

Big Data on many computers

Consistent Hashing (CH) is one way to

determine which computer stores which

data

CH uses mapping of keys and computer

IDs on a circle

Each computer stores a range of keys

Overlay Network is used to route the

data to/from the right computer


	Online Storage Systems
	Distributed Hash Tables

