
Binary Search Trees:
Introduction

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Data Structures
Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT


Learning Objectives

Provide examples of the sorts of
problems we hope to solve with Binary
Search Trees.
Show why data structures that we have
already covered are insufficient.



Outline

1 Local Search

2 Attempts



Dictionary Search
Find all words that start with some given
string.



Date Ranges

Find all emails received in a given period.



Closest Height
Find the person in your class whose height is
closest to yours.



Local Search

Definition
A Local Search Datastructure stores a
number of elements each with a key coming
from an ordered set. It supports operations:

RangeSearch(x , y): Returns all
elements with keys between x and y .
NearestNeighbors(z): Returns the
element with keys on either side of z .



Example

RangeSearch(5, 12)

NearestNeighbors(3)



Example

RangeSearch(5, 12)

NearestNeighbors(3)



Example

RangeSearch(5, 12)

NearestNeighbors(3)



Dynamic Data Structure

We would also like to be able to modify the
data structure as we go.

Insert(x): Adds a element with key x .
Delete(x): Removes the element with
key x .



Example

Insert(3)

Delete(10)



Example

Insert(3)

Delete(10)



Example

Insert(3)

Delete(10)



Problem
If an empty data structure is given these
commands what does it output at the end?

Insert(3)
Insert(8)
Insert(5)
Insert(10)
Delete(8)
Insert(12)
NearestNeighbors(7)



Answer



Outline

1 Local Search

2 Attempts



Hash Table
RangeSearch: Impossible ×

NearestNeighbors: Impossible ×
Insert: O(1) X
Delete: O(1) X



Hash Table
RangeSearch: Impossible ×
NearestNeighbors: Impossible ×

Insert: O(1) X
Delete: O(1) X



Hash Table
RangeSearch: Impossible ×
NearestNeighbors: Impossible ×
Insert: O(1) X

Delete: O(1) X



Hash Table
RangeSearch: Impossible ×
NearestNeighbors: Impossible ×
Insert: O(1) X
Delete: O(1) X



Array
RangeSearch: O(n) ×

NearestNeighbors: O(n) ×
Insert: O(1) X
Delete: O(1) X



Array
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×

Insert: O(1) X
Delete: O(1) X



Array
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×
Insert: O(1) X

Delete: O(1) X



Array
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×
Insert: O(1) X
Delete: O(1) X



Sorted Array
RangeSearch: O(log(n)) X

NearestNeighbors: O(log(n)) X
Insert: O(n) ×
Delete: O(n) ×



Sorted Array
RangeSearch: O(log(n)) X
NearestNeighbors: O(log(n)) X

Insert: O(n) ×
Delete: O(n) ×



Sorted Array
RangeSearch: O(log(n)) X
NearestNeighbors: O(log(n)) X
Insert: O(n) ×

Delete: O(n) ×



Sorted Array
RangeSearch: O(log(n)) X
NearestNeighbors: O(log(n)) X
Insert: O(n) ×
Delete: O(n) ×



Linked List
RangeSearch: O(n) ×

NearestNeighbors: O(n) ×
Insert: O(1) X
Delete: O(1) X



Linked List
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×

Insert: O(1) X
Delete: O(1) X



Linked List
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×
Insert: O(1) X

Delete: O(1) X



Linked List
RangeSearch: O(n) ×
NearestNeighbors: O(n) ×
Insert: O(1) X
Delete: O(1) X



Need Something New

Problem
Previous data structures won’t work. We
need something new.


	Local Search
	Attempts

