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Learning Objectives

Provide examples of the sorts of
problems we hope to solve with Binary
Search Trees.
Show why data structures that we have
already covered are insufficient.



Outline

1 Local Search

2 Attempts



Dictionary Search
Find all words that start with some given
string.



Date Ranges

Find all emails received in a given period.



Closest Height
Find the person in your class whose height is
closest to yours.



Local Search

Definition
A Local Search Datastructure stores a
number of elements each with a key coming
from an ordered set. It supports operations:

RangeSearch(x , y): Returns all
elements with keys between x and y .
NearestNeighbors(z): Returns the
element with keys on either side of z .



Example

RangeSearch(5, 12)

NearestNeighbors(3)
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Dynamic Data Structure

We would also like to be able to modify the
data structure as we go.

Insert(x): Adds a element with key x .
Delete(x): Removes the element with
key x .



Example

Insert(3)

Delete(10)
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Example

Insert(3)

Delete(10)



Problem
If an empty data structure is given these
commands what does it output at the end?

Insert(3)
Insert(8)
Insert(5)
Insert(10)
Delete(8)
Insert(12)
NearestNeighbors(7)



Answer
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Hash Table
RangeSearch: Impossible ×

NearestNeighbors: Impossible ×
Insert: O(1) X
Delete: O(1) X
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Need Something New

Problem
Previous data structures won’t work. We
need something new.
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