
Binary Search Trees:
Basic Operations

Daniel Kane
Department of Computer Science and Engineering

University of California, San Diego

Data Structures
Data Structures and Algorithms

https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT


Learning Objectives

Implement basic operations on Binary
Search Trees.
Understand some of the difficulties with
making updates.



Outline

1 Find

2 Next Element

3 Search

4 Insert

5 Delete



Find

Find

Input: Key k , Root R
Output: The node in the tree of R with key

k



Idea

Find(6)



Idea

Find(6)



Idea

Find(6)



Idea

Find(6)



Algorithm

Find(k,R)

if R .Key = k:
return R

else if R .Key > k :

return Find(k,R .Left)
else if R .Key < k :

return Find(k,R .Right)



Missing Key
Run Find(5).

Key not in tree. Did find point where it
should be.



Missing Key

If you stop before reaching a null pointer, you
find the place in the tree where k would fit.



Modification

Find (modified)
else if R .Key > k :

if R .Left ̸= null:
return Find(k,R .Left)

return R



Outline

1 Find

2 Next Element

3 Search

4 Insert

5 Delete



Adjacent Elements

Given a node N in a Binary Search Tree,
would like to find adjacent elements.



Next

Next

Input: Node N
Output: The node in the tree with the next

largest key.



Case I
If you have right child.



Case II
No right child.



Next

Next(N)

if N .Right ̸= null:
return LeftDescendant(N .Right)

else:
return RightAncestor(N)



Left Descendant

LeftDescendant(N)

if N .Left = null
return N

else:
return LeftDescendant(N .Left)



Right Ancestor

RightAncestor(N)

if N .Key < N .Parent.Key
return N .Parent

else:
return RightAncestor(N .Parent)



Outline

1 Find

2 Next Element

3 Search

4 Insert

5 Delete



Range Search

Range Search

Input: Numbers x , y , root R
Output: A list of nodes with key between x

and y



Idea

RangeSearch(5, 12).



Idea

RangeSearch(5, 12).



Idea

RangeSearch(5, 12).



Implementation

RangeSearch(x , y ,R)

L← ∅
N ← Find(x ,R)
while N .Key ≤ y

if N .Key ≥ x:
L← L.Append(N)

N ← Next(N)
return L



Outline

1 Find

2 Next Element

3 Search

4 Insert

5 Delete



Insert

Insert

Input: Key k and root R
Output: Adds node with key k to the tree



Insert Idea
Insert(3)



Insert Idea
Insert(3)



Implementation

Insert(k,R)

P ← Find(k,R)
Add new node with key k as child of
P



Outline

1 Find

2 Next Element

3 Search

4 Insert

5 Delete



Delete

Delete

Input: Node N
Output: Removes node N from the tree



Difficulty

Cannot simply remove.
Delete(13)



Idea



Idea



Idea



Idea



Implementation

Delete(N)

if N .Right = null:
Remove N, promote N .Left

else:
X ← Next(N)

∖∖ X .Left = null
Replace N by X, promote X .Right



Problem
Which of the following trees is obtained
when the selected node is deleted?



Problem
Which of the following trees is obtained
when the selected node is deleted?



Next Time

Runtime and balance.


	Find
	Next Element
	Search
	Insert
	Delete

