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Learning Objectives

Think about the runtime of basic binary
tree operations.

Understand the motivation behind
binary search tree balance.

Implement a rotation.
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Runtime

How long do Binary Search Tree operations
take?
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Number of operations = O(Depth)



Problem

Which nodes will be faster to search for in
the following tree?
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Depth can be as bad as n.
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Depth can be much smaller.



Balance

m Want left and right subtrees to have
approximately the same size.



Balance

m Want left and right subtrees to have

approximately the same size.
m Suppose perfectly balanced:



Balance

m Want left and right subtrees to have

approximately the same size.
m Suppose perfectly balanced:

m Each subtree half the size of its parent.
m After log,(n) levels, subtree of size 1.
m Operations run in O(log(n)) time.



Problem

Insertions and deletions can destroy balance!
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Insertions and deletions can destroy balance!
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Problem

Insertions and deletions can destroy balance!
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Rebalancing

|dea: Rearrange tree to maintain balance.



Rebalancing

|dea: Rearrange tree to maintain balance.
Problem: How do we rearrange tree while
maintaining order?



Rotations

A<Y<B<X<C(C



Implementation

RotateRight(X)

P < X.Parent

Y < X.Left

B + Y .Right

Y .Parent < P
P.AppropriateChild + Y
X.Parent < Y, Y.Right <+ X
B.Parent < X, X.Left < B



Next Time

How to keep a tree balanced. AVL trees.
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