Binary Search Trees:
Balance

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Data Structures
Data Structures and Algorithms


https://goo.gl/ZVOAWt
https://goo.gl/KAfKJT

Learning Objectives

Think about the runtime of basic binary
tree operations.

Understand the motivation behind
binary search tree balance.

Implement a rotation.




Outline

@ Runtime



Runtime

How long do Binary Search Tree operations
take?



Find

Find(5)
@)
2) ®
T @ (%)
HE @
5

Number of operations = O(Depth)



Problem

Which nodes will be faster to search for in
the following tree?




Example |

Depth can be as bad as n.



Outline

@® Balanced Trees



Example [l

&)
(2) (8)
O & O 19
& © ©

Depth can be much smaller.



Balance

m Want left and right subtrees to have
approximately the same size.



Balance

m Want left and right subtrees to have

approximately the same size.
m Suppose perfectly balanced:



Balance

m Want left and right subtrees to have

approximately the same size.
m Suppose perfectly balanced:

m Each subtree half the size of its parent.
m After log,(n) levels, subtree of size 1.
m Operations run in O(log(n)) time.



Problem

Insertions and deletions can destroy balance!

®



Problem

Insertions and deletions can destroy balance!

“o



Problem

Insertions and deletions can destroy balance!



Problem

Insertions and deletions can destroy balance!




Problem

Insertions and deletions can destroy balance!



Outline

® Rotations



Rebalancing

|dea: Rearrange tree to maintain balance.



Rebalancing

|dea: Rearrange tree to maintain balance.
Problem: How do we rearrange tree while
maintaining order?



Rotations

A<Y<B<X<C(C



Implementation

RotateRight(X)

P < X.Parent

Y < X.Left

B + Y .Right

Y .Parent < P
P.AppropriateChild + Y
X.Parent < Y, Y.Right <+ X
B.Parent < X, X.Left < B



Next Time

How to keep a tree balanced. AVL trees.



	Runtime
	Balanced Trees
	Rotations

